Community Detection

Rik Sarkar
Communities

• Groups of friends
• Colleagues/collaborators
• Web pages on similar topics
• Biological reaction groups
• Similar customers/users …
Other applications

• A coarser representation of networks
 • One or more meta-node for each community
• Identify bridges/weak-links
• Structural holes
Different definitions of communities

- General idea: **Dense subgraphs**: More links within community, few links outside

- Some types and considerations:
 1. Partitions: Each node in exactly one community
 2. Overlapping: Each node can be in multiple communities
From last class: Partitioning (Girvan-newman)

Repeat:

• Find edge e of highest betweenness
• Remove e

• Produces a hierarchic partitioning structure as the graph decomposes into smaller components
Finding dense subgraphs is hard in general

- Finding largest clique
 - NP-hard
 - Computationally intractable
 - Polynomial time (efficient) algorithms unlikely to exist
- Decision version: Does a clique of size k exist?
 - NP-complete
 - Computationally intractable
 - Polynomial time (efficient) algorithms unlikely to exist
Few preliminary definitions

- For S, T subgraphs of V
 - $e(S,T)$: Set of edges from S to T
 - $e(S) = e(S,S)$: Edges within S
 - $d_S(v)$: number of edges from v to S
- Edge density of S: $|e(S)|/|S|$
 - Largest for complete graphs or cliques
Dense subgraph

• The subgraph with largest edge density
 • There also exists a decision version:
 • Is there a subgraph with edge density $> \alpha$
• Can be solved using Max Flow algorithms
 • $O(n^2 m)$: inefficient in large datasets
 • Finds the one densest subgraph
• Variant: Find densest S containing given subset X
• Other versions: Find subgraphs size k or less
 • NP-hard
Efficient approximation for finding dense S containing X

Let $G_n \leftarrow G$.

\textbf{for} $k = n$ \textbf{downto} $|X| + 1$ \textbf{do}

Let $v \notin X$ be the lowest degree node in $G_k \setminus X$.
Let $G_{k-1} \leftarrow G_k \setminus \{v\}$.

Output the densest subgraph among $G_n, \ldots, G_{|X|}$.

- Gives a $1/2$ approximation

- Edge density of output S set is at least half of optimal set S^*

- See Kempe 2011 for proof.
Modularity

- We want to find the many communities, not just one
- Clustering a graph
- Problem: What is the right clustering?
- Idea: Maximize a quantity called *modularity*
Modularity of subset S

- Given graph G

- Consider a random G' graph with same node degrees (remember configuration model)

 - Number of edges in S in G: $|e(S)|_G$

 - Expected number of edges in S in G': $E[|e(S)|_{G'}]$

 - Modularity of S: $|e(S)| - E[|e(S)|_{G'}]$

 - More coherent communities have more edges inside than would be expected in a random graph with same degrees

 - Note: modularity can be negative
Modularity of a clustering

• Take a partition (clustering) of \(V: \mathcal{P} = \{S_1, \ldots, S_k\} \)

• Write \(d(S_i) \) for sum of degrees of all nodes in \(S_i \)

• Can be shown that \(\mathbb{E}[|e(S)|_{G'}] \sim d(S_i)^2 \)

• Definition: Sum over the partition:

\[
q(\mathcal{P}) = \frac{1}{m} \sum_{i} |e(S_i)| - \frac{1}{4m} d(S_i)^2
\]
Modularity based clustering

- Finding clustering with highest modularity is NP-hard

- Heuristic:
 - Use modularity matrix
 - Take its first eigen vector

- Note: Modularity is a relative measure of community structure.

- Not entirely clear in which cases it may or may not give good results

- A threshold of 0.3 or more is sometimes considered to give good clustering
Modularity

- Can be used as a stopping criterion (or finding right level of partitioning) in other methods
 - Eg. Girvan-newman
Faster modularity clustering

- Start with all nodes as their own community and proceed by merging
- In every round,
 - Consider merging every pair of current communities
 - Merge the pair giving largest Δq : increase in modularity
 - Keep store modularity after each round
- Take the set of clusters in round with max modularity
- $O((m+n)n)$
- General technique for hierarchic clustering, except using modularity
Karate club hierarchic clustering

- Shape of nodes gives actual split in the club due to internal conflicts

Correlation clustering

- Some edges are known to be similar/friends/trusted
 - marked “+”
- Some edges are known to be dissimilar/enemies/distrusted
 - marked “-”
- Maximize the number of + edges inside clusters and
- Maximize the number of - edges between clusters
Applications

- Community detection based on similar people/users
- Document clustering based on known similarity or dissimilarity between documents
Features

- Clustering without need to know number of clusters
- k-means, medians, clusters etc need to know number of clusters or other parameters like threshold
- Number of clusters depends on network structure
- Actually, does not need any parameter
- NP hard
- Note that graph may be complete or not complete
- In some applications with unlabeled edges, it may be reasonable to change edges to “+” edges and non-edges to “-” edges
Approximation

- Naive 1/2 approximation (not very useful):
 - If there are more + edges
 - Put them all in 1 cluster
 - If there are more - edges
 - Put nodes in n different clusters
Better approximations

• 2 ways of looking at it:
 • Maximize agreement or Minimize disagreement
 • Same idea, but we know different approximation algorithms

• Nikhil Bansal et al. develop PTAS (polynomial time approximation scheme) for maximizing agreement:
 • (1-\(\epsilon\)) approximation, running time \(O(n^2e^{O(1/\epsilon)})\)
Approximation

- Min-disagree:
 - 4-approximation
Projects

• Some people are looking for teammates (P1: lastfm, P5: Entropy, others..)

• Please post and use the piazza forum to find teammates
Next

- (Possibly) A bit more on clustering
- Diffusion, Spread of epidemics, cascades, finding influential nodes
- Other suggestions?