
Community Detection
Rik Sarkar

Communities
• Groups of friends

• Colleagues/collaborators

• Web pages on similar topics

• Biological reaction groups

• Similar customers/users …

Other applications

• A coarser representation of networks

• One or more meta-node for each community

• Identify bridges/weak-links

• Structural holes

Different definitions of
communities

• General idea: Dense subgraphs: More links within
community, few links outside

• Some types and considerations:

1. Partitions: Each node in exactly one community

2. Overlapping: Each node can be in multiple
communities

From	last	class:	Partitioning	(Girvan-newman)

Repeat:	
• Find	edge	e	of	highest	
betweenness		
• Remove	e	
!
• Produces	a	hierarchic	
paritioning	structure	as	the	
graph	decomposes	into	
smaller	components

Finding dense subgraphs is
hard in general

• Finding largest clique

• NP-hard

• Computationally intractable

• Polynomial time (efficient) algorithms unlikely to exist

• Decision version: Does a clique of size k exist?

• NP-complete

• Computationally intractable

• Polynomial time (efficient) algorithms unlikely to exist

Few preliminary definitions
• For S, T subgraphs of V

• e(S,T): Set of edges from S to T

• e(S) = e(S,S): Edges within S

• dS(v) : number of edges from v to S

• Edge density of S : |e(S)|/|S|

• Largest for complete graphs or cliques

Dense subgraph
• The subgraph with largest edge density

• There also exists a decision version:

• Is there a subgraph with edge density > α

• Can be solved using Max Flow algorithms

• O(n2m) : inefficient in large datasets

• Finds the one densest subgraph

• Variant: Find densest S containing given subset X

• Other versions: Find subgraphs size k or less

• NP-hard

Efficient approximation for
finding dense S containing X
!

!

!

• Gives a 1/2 approximation

• Edge density of output S set is at least half of
optimal set S*

• See Kempe 2011 for proof.

Modularity

• We want to find the many communities, not just one

• Clustering a graph

• Problem: What is the right clustering?

• Idea: Maximize a quantity called modularity

Modularity of subset S
• Given graph G

• Consider a random G’ graph with same node degrees (remember
configuration model)

• Number of edges in S in G: |e(S)|G

• Expected number of edges in S in G’: E[|e(S)|G’]

• Modularity of S: |e(S)| - E[|e(S)|G’]

• More coherent communities have more edges inside than would
be expected in a random graph with same degrees

• Note: modularity can be negative

Modularity of a clustering
• Take a partition (clustering) of V:

• Write d(Si) for sum of degrees of all nodes in Si

• Can be shown that E[|e(S)|G’] ~ d(Si)2

• Definition: Sum over the partition:

!

Modularity based clustering
• Finding clustering with highest modularity is NP-hard

• Heuristic:

• Use modularity matrix

• Take its first eigen vector

• Note: Modularity is a relative measure of community structure.

• Not entirely clear in which cases it may or may not give good
results

• A threshold of 0.3 or more is sometimes considered to give good
clustering

Modularity

• Can be used as a stopping criterion (or finding right
level of partitioning) in other methods

• Eg. Girvan-newman

Faster modularity clustering
• Start with all nodes as their own community and proceed by merging

• In every round,

• Consider merging every pair of current communities

• Merge the pair giving largest Δq : increase in modularity

• Keep store modularity after each round

• Take the set of clusters in round with max modularity

• O((m+n)n)

• General technique for hierarchic clustering, except using modularity

Karate club hierarchic
clustering

• Shape of nodes gives actual split in the club due to
internal conflicts

Newman 2003. Fast
algorithm for detecting
community structure in

networks

Correlation clustering
• Some edges are known to be similar/

friends/trusted

• marked “+”

• Some edges are known to be
dissimilar/enemies/distrusted

• marked “-”

• Maximize the number of + edges
inside clusters and

• Maximize the number of - edges
between clusters

Applications

• Community detection based on similar people/
users

• Document clustering based on known similarity or
dissimilarity between documents

Features
• Clustering without need to know number of clusters

• k-means, medians, clusters etc need to know number of clusters
or other parameters like threshold

• Number of clusters depends on network structure

• Actually, does not need any parameter

• NP hard

• Note that graph may be complete or not complete

• In some applications with unlabeled edges, it may be reasonable
to change edges to “+” edges and non-edges to “-” edges

Approximation
• Naive 1/2 approximation (not very useful):

• If there are more + edges

• Put them all in 1 cluster

• If there are more - edges

• Put nodes in n different clusters

Better approximations
• 2 ways of looking at it:

• Maximize agreement or Minimize disagreement

• Same idea, but we know different approximation
algorithms

• Nikhil Bansal et al. develop PTAS (polynomial time
approximation scheme) for maximizing agreement:

• (1-ε) approximation, running time

Approximation

• Min-disagree:

• 4-approximation

Projects

• Some people are looking for teammates (P1:
lastfm, P5: Entropy, others..)

• Please post and use the piazza forum to find
teammates

Next

• (Possibly) A bit more on clustering

• Diffusion, Spread of epidemics, cascades, finding
influential nodes

!

• Other suggestions?

