
Community detection
and cascades

Rik Sarkar

Today

• Community Detection

• Spectral clustering

• Overlapping community detection

• Cascades

Spectral clustering
• Clustering or community detection using eigen

vectors of the laplacian

• Standard clustering algorithms assume a Euclidean
space

• Many types of data do not have Euclidean
coordinates

• Often, they come from other spaces,

• Or we are given just a notion of “similarity” or
“distance” of items

Spectral clustering
• Idea:

• Compute a graph from the
similarity or distance measures

• Use the eigen vectors of the
graph to embed in a euclidean
space.

• Cluster using standard methods

Spectral clustering
• Essentially developed for graphs/networks

• Applies to many types of data

• Even where standard methods do not apply

!

• Ideas from networks are easy to apply to many
other cases

Spectral clustering
• Basic algorithm: Finding k clusters

• Represent data as graph: connect edges between “similar”
nodes

• Compute laplacian L

• Compute first k eigen vectors of L

• Remember: Each vector contains a value for each node

• Embed the nodes in Rk using their values in the eigen vectors

• Apply k-means or other euclidean clustering

Why spectral clustering
works

• Laplacian L = D - A

• For a real vector x:

!

• And

x

T
Lx =

X

(i,j)2E

(xi � xj)
2

�1 = min

P
(i,j)2E(xi � xj)2P

x

2
i

Rayleigh Theorem

• Min achieved when x is a unit eigen vector e1
(Fiedler vector)

•

• Since x is orthogonal to e0= [1,1,1,…],
X

xi = 0

X
x

2
i = 1

�1 = min

P
(i,j)2E(xi � xj)2P

x

2
i

• In x, some components +ve, some -ve

• Min achieved when number of edges across zero
are minimized

• A good “cut”

�1 = minP
xi=0

P
(i,j)2E

(x
i

� x

j

)2
P

x

2
i

Variants of Spectral
clustering

• It is possible to use other types of laplacians called normalized
Laplacians

• Give slightly different approximation properties in terms of
optimizing cuts

!

!

• For more details, see : Luxburg, Tutorial on Spectral Clustering

• Note: Eigen vectors are sometimes written differently

• We started count at 0, some authors start at 1.

• Then the Fiedler vector will be e2 and the eigen value is λ2

Overlapping communities

Non-Overlapping
communities

Overlapping communities

Affiliation graph model

• Generative model:

• Each node belongs to some communities

• If both A and B are in community c

• Edge (A, B) is created with probability pc

Affiliation graph model

• Problem:

• Given the network, recover:

• Communities: C

• Memberships or Affiliations: M

• Probabilities: pc

Maximum likelihood
estimation

• Given data X

• Assume data is generated by some model f with
parameters Θ

• Express probability P[f(X| Θ)]: f generates X, given
specific values of Θ.

• Compute argmaxΘ (P[f(X| Θ)])

MLE for AGM: The
BIGCLAM method

• Finding the best possible bipartite network is computationally
hard (too many possibilities)

• Instead, take a model where memberships are real numbers:
Membership strengths

• FuA Strength of membership of u in A

• PA(u,v) = 1 - exp(-FuA.FvA) : Each community links
independently, by product of strengths

• Total probability of an edge existing:

• P(u,v) = 1 - ΠC(1 - Pc(u,v))

BIGCLAM
• Find the F that maximizes the likelihood that exactly the

right set of edges exist.

• Details Omitted

!

• Optionally, See

• Overlapping Community Detection at Scale: A
Nonnegative Matrix Factorization Approach by J. Yang, J.
Leskovec. ACM International Conference on Web Search
and Data Mining (WSDM), 2013.

Network cascades
• Things that spread (diffuse) along network edges

• Innovation:

• We use technology our friends/colleagues use

• Compatibility

• Information/Recommendation/endorsement

Models

• Basic idea: Your benefits of adopting a new
behavior increases as more of your friends adopt it

• Technology, beliefs, ideas… a “contagion”

A Threshold
• v has d edges

• p fraction use A

• (1-p) use B

• v’s benefit in using A is a per A-
edge

• v’s benefit in using B is b per B-
edge

Threshold

• A is a better choice if:

!

!

• or:

The contagion threshold
• Let us write q = b/(a+b)

• If q is small, that means b is small relative to a

• Therefore a is useful even if only a small fraction
is using it

• If q is large, that means the opposite is true, and B
is a better choice

Cascading behavior
• If everyone is using A (or everyone is using B)

• There is no reason to change — equilibrium

• If both are used by some people, the network state may
change towards one or the other.

• Cascades: We want to understand how likely that is.

• Or there may be a deadlock

• Equilibrium: We want to understand what that may look
like

Cascades
• Suppose initially everyone uses B

• Then some small number adopts A

• For some reason outside our knowledge

• Will the entire network adopt A?

• What will cause A’s spread to stop?

Example

• a =3, b=2

• q = 2/5

Example

• a =3, b=2

• q = 2/5

Stopping of spread
• Tightly knit communities stop the spread

• Weak links are good for information transmission, not for
behavior transmission

• Political conversion is rare

• Certain social networks are popular in certain demographics

• You can defend your “product” by creating tight communities
among users

Spreading innovation
• A can be made to spread more

by making a better product,

• say a = 4, then q = 1/3

• and A spreads

• Or, convince some key people
to adopt A

• node 12 or 13

