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Today

• Community Detection 

• Spectral clustering 

• Overlapping community detection 

• Cascades



Spectral clustering
• Clustering or community detection using eigen 

vectors of the laplacian 

• Standard clustering algorithms assume a Euclidean 
space 

• Many types of data do not have Euclidean 
coordinates 

• Often, they come from other spaces,  

• Or we are given just a notion of “similarity” or 
“distance” of items 



Spectral clustering
• Idea: 

• Compute a graph from the 
similarity or distance measures 

• Use the eigen vectors of the 
graph to embed in a euclidean 
space. 

• Cluster using standard methods



Spectral clustering
• Essentially developed for graphs/networks 

• Applies to many types of data 

• Even where standard methods do not apply 

!

• Ideas from networks are easy to apply to many 
other cases



Spectral clustering
• Basic algorithm: Finding k clusters 

• Represent data as graph: connect edges between “similar” 
nodes 

• Compute laplacian L 

• Compute first k eigen vectors of L 

• Remember: Each vector contains a value for each node 

• Embed the nodes in Rk using their values in the eigen vectors 

• Apply k-means or other euclidean clustering



Why spectral clustering 
works

• Laplacian L = D - A 

• For a real vector x:  
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Rayleigh Theorem

• Min achieved when x is a unit eigen vector e1 
(Fiedler vector) 

•   

• Since x is orthogonal to e0= [1,1,1,…], 
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• In x, some components +ve, some -ve 

• Min achieved when number of edges across zero 
are minimized 

• A good “cut”
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Variants of Spectral 
clustering

• It is possible to use other types of laplacians called normalized 
Laplacians  

• Give slightly different approximation properties in terms of 
optimizing cuts 

!
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• For more details, see : Luxburg, Tutorial on Spectral Clustering 

• Note: Eigen vectors are sometimes written differently  

• We started count at 0, some authors start at 1.  

• Then the Fiedler vector will be e2 and the eigen value is λ2 



Overlapping communities





Non-Overlapping 
communities



Overlapping communities



Affiliation graph model

• Generative model: 

• Each node belongs to some communities 

• If both A and B are in community c  

• Edge (A, B) is created with probability pc



Affiliation graph model

• Problem: 

• Given the network, recover:  

• Communities: C  

• Memberships or Affiliations: M 

• Probabilities: pc





Maximum likelihood 
estimation

• Given data X 

• Assume data is generated by some model f with 
parameters Θ 

• Express probability P[f(X| Θ)]: f generates X, given 
specific values of Θ. 

• Compute argmaxΘ (P[f(X| Θ)])



MLE for AGM: The 
BIGCLAM method

• Finding the best possible bipartite network is computationally 
hard (too many possibilities) 

• Instead, take a model where memberships are real numbers: 
Membership strengths 

• FuA Strength of membership of u in A 

• PA(u,v) = 1 - exp(-FuA.FvA) : Each community links 
independently, by product of strengths 

• Total probability of an edge existing: 

• P(u,v) = 1 - ΠC(1 - Pc(u,v))



BIGCLAM 
• Find the F that maximizes the likelihood that exactly the 

right set of edges exist. 

• Details Omitted 

!

• Optionally, See  

• Overlapping Community Detection at Scale: A 
Nonnegative Matrix Factorization Approach by J. Yang, J. 
Leskovec. ACM International Conference on Web Search 
and Data Mining (WSDM), 2013.



Network cascades
• Things that spread (diffuse) along network edges 

• Innovation:  

• We use technology our friends/colleagues use 

• Compatibility 

• Information/Recommendation/endorsement



Models

• Basic idea: Your benefits of adopting a new 
behavior increases as more of your friends adopt it 

• Technology, beliefs, ideas… a “contagion”



A Threshold
• v has d edges 

• p fraction use A 

• (1-p) use B 

• v’s benefit in using A is a per A-
edge 

• v’s benefit in using B is b per B-
edge 



Threshold

• A is a better choice if: 

!
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• or:



The contagion threshold
• Let us write q = b/(a+b) 

• If q is small, that means b is small relative to a 

• Therefore a is useful even if only a small fraction 
is using it 

• If q is large, that means the opposite is true, and B 
is a better choice



Cascading behavior
• If everyone is using A (or everyone is using B) 

• There is no reason to change — equilibrium 

• If both are used by some people, the network state may 
change towards one or the other.  

• Cascades: We want to understand how likely that is. 

• Or there may be a deadlock 

• Equilibrium: We want to understand what that may look 
like



Cascades
• Suppose initially everyone uses B 

• Then some small number adopts A 

• For some reason outside our knowledge 

•  Will the entire network adopt A?  

• What will cause A’s spread to stop?



Example

• a =3, b=2 

• q = 2/5



Example

• a =3, b=2 

• q = 2/5



Stopping of spread
• Tightly knit communities stop the spread 

• Weak links are good for information transmission, not for 
behavior transmission 

• Political conversion is rare 

• Certain social networks are popular in certain demographics 

• You can defend your “product” by creating tight communities 
among users 



Spreading innovation
• A can be made to spread more 

by making a better product,  

• say a = 4, then q = 1/3 

• and A spreads 

• Or, convince some key people 
to adopt A 

• node 12 or 13


