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Figure 1: Example of a Grid.

Exercise 1 A grid is an arrangement of squares as shown in Fig. 1. Prove that for any given
grid, the number of grid squares inside a circle of radius r is O(r2).

Proof Let us suppose each grid square has side s, and area s2. Since the interiors of the
grid squares are disjoint, the total area covered by any n distinct grid squares is ns2. The area
of the circle of radius r is πr2, and the maximum number of possible squares in the circle is
≤ πr2/s2. For a given grid s is fixed, so the number of squares in the circle is O(r2).

Exercise 2 Show that a bipartite graph has no cycles of odd length.

Proof Suppose the two partitions are U and V. Without loss of generality, let us suppose
that the cycle C starts from  ∈ U. By definition of a bipartite graph, traversal along C must
alternate between the U→ V type on odd numbered edges and the V → U type on even num-
bered edges. Since the cycle must end at  ∈ U, it must end with a V → U type edge which is
even numbered. Thus C must have even numbered edges.

Exercise 3 An isolated vertex is one which has no edges. Consider a graph G with n vertices
such that every edge exists with probability p = (1+ ϵ)(lnn)/(n− 1). Prove that the probability
that G has one or more isolated vertices is less than 1/nϵ.

[Hint: Write the probability that none of the possible edges at a vertex exist. Use the
inequality (1 − p)1/p ≤ 1/e for 0 ≤ p ≤ 1. You can also use the Union bound, which says
Pr [A OR B] ≤ Pr [A] + Pr [B].]
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Proof At vertex , probability that a particular edge does not exist is (1− p); the probability
q that the vertex  is isolated, i.e. all n − 1 possible edges do not exist is q = (1 − p)n−1. We
can substitute n − 1 = (1 + ϵ)(lnn)/p in the exponent, and get q ≤ e−((1+ϵ)(lnn)). Therefore,
q ≤ n−(1+ϵ).

By union bound, the probability that over n vertices, one or more is isolated is ≤ nq ≤ n−ϵ.

Exercise 4 Show that the matrix M =
�

 b
b 

�

has orthogonal eigenvectors for any real num-

bers , b. [Hint: Try comparing values of (M) ·  and (M) ·  for vectors  and , then use
definition of eigen vectors. You can use the fact that M has eigen values λ and μ that are
distinct.]
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= 11 + b21 + b12 + 22.

And (M) ·  =
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= 11 + b21 + b12 + 22.

Thus (M) ·  = (M) ·  for any vectors  and . Now suppose  and  are eigen vectors of
M, with eigen values λ and μ. Then (λ) ·  = (M) ·  = (M) ·  = (μ) · .

Since λ 6= μ, it follows that (·)(λ−μ) = 0 implies · = 0, that is,  and  are orthogonal.

Exercise 5 Let us define matrices A and B to be similar if there exists a matrix P such that
A = PBP−1.

For similar matrices A and B, show that if λ is an eigenvalue of A, then it is also an eigen-
value of B. [Hint: Use definition of eigen vector, then multiply both sides by suitable matrices.
The eigen vectors corresponding to the eigen value may not be the same. You can assume
A,B, P are square.]

Proof Let  be an eigen vector of A with eigen value λ. Also, let use denote P−1 = y.

A = λ

⇒ PBP−1 = λ

⇒ BP−1 = P−1λ = λP−1 [After Left-multiplication by P−1]

⇒ By = λy [Substituting y.]

Therefore, λ is also an eigen value of B with eigen vector y.
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