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Figure 1: Example of a Grid.

Exercise 1 A grid is an arrangement of squares as shown in Fig. 1. Prove that for any given
grid, the number of grid squares inside a circle of radius r is O(r?).

Proof Let us suppose each grid square has side s, and area s2. Since the interiors of the
grid squares are disjoint, the total area covered by any n distinct grid squares is ns2. The area
of the circle of radius r is mr2, and the maximum number of possible squares in the circle is
< mr?/s2. For a given grid s is fixed, so the number of squares in the circle is O(r?). O

Exercise 2 Show that a bipartite graph has no cycles of odd length.

Proof Suppose the two partitions are U and V. Without loss of generality, let us suppose
that the cycle C starts from u € U. By definition of a bipartite graph, traversal along C must
alternate between the U — V type on odd numbered edges and the V — U type on even num-
bered edges. Since the cycle must end at u € U, it must end with a V — U type edge which is
even numbered. Thus C must have even numbered edges. O

Exercise 3 An isolated vertex is one which has no edges. Consider a graph G with n vertices
such that every edge exists with probability p = (1+ €)(Inn)/(n—1). Prove that the probability
that G has one or more isolated vertices is less than 1/n¢.

[Hint: Write the probability that none of the possible edges at a vertex exist. Use the
inequality (1 —p)/P < 1/e for 0 < p < 1. You can also use the Union bound, which says
Pr[{A OR B] < Pr[A] + Pr[B].]
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Proof At vertex v, probability that a particular edge does not exist is (1 — p); the probability

g that the vertex v is isolated, i.e. all n—1 possible edges do not exist is g = (1 —p)"~1. We

can substitute n—1 = (1 + £)(Inn)/p in the exponent, and get g < e~ ((1+8)(nn)  Therefore,
q S n—(1+£).

By union bound, the probability that over n vertices, one or more is isolated is < ng < n—¢.

O

Exercise 4 Show that the matrix M = ( g 2 ) has orthogonal eigenvectors for any real num-

bers a, b. [Hint: Try comparing values of (Mv)-u and (Mu) - v for vectors u and v, then use
definition of eigen vectors. You can use the fact that M has eigen values A and u that are
distinct.]

_( avi+bv uy \ _
Proof (Mv)-u= ( bvy + avy W )= aviui + bvaui + bviuz + avous.

_( auy + buz v\
And (Mu) v_( bul + aus Vo =auivi + buyvi + buivz + auzvs.

Thus (Mv)-u = (Mu)- v for any vectors u and v. Now suppose u and v are eigen vectors of
M, with eigen values A and u. Then (Au)-v=Mu)-v=Mv)-u=(uv)-u.
Since A # u, it follows that (u-v)(A—u) = 0 implies u-v = 0, that is, u and v are orthogonal. [J

Exercise 5 Let us define matrices A and B to be similar if there exists a matrix P such that
A=PBPL

For similar matrices A and B, show that if A is an eigenvalue of A, then it is also an eigen-
value of B. [Hint: Use definition of eigen vector, then multiply both sides by suitable matrices.
The eigen vectors corresponding to the eigen value may not be the same. You can assume
A, B, P are square.]

Proof Let x be an eigen vector of A with eigen value A. Also, let use denote P~ 1x =y.

AX = AXx
= PBP1x = Ax
= BP~1x = P~1Ax = AP~ 1x [After Left-multiplication by P~1]
= By = Ay [Substituting y.]

Therefore, A is also an eigen value of B with eigen vector y. L]



