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Lecture 1. Basics and sample problems
TA: Maria Astefanoaei Solutions to Exercises

Exercise 1. How many edges can a graph have? (assuming there is at most one edge between any
two vertices.) If each possible edge exists with a probability p, what should be the value of p such
that the expected number of edges at each vertex is 1?

Answer. Assuming it is a simple graph, there is at most one edge between any pair of nodes.
And there are

(
n
2

)
nodes. Thus a grpah can have

(
n
2

)
= n(n−1)

2 edges.

A node v can have at most n − 1 edges incident on it. Each of these exists with a probability p
independent of the others. The expected number of edges at node v is (n− 1)p. Therefore we can
solve for p from (n− 1)p = 1, therefore p = 1

n−1 .

Exercise 2. Suppose every year Mr. X makes double the number of friends he made last year
(starting with making 1 friend in first year). In how many years will he make n friends? (asymp-
totic notation is fine.)

Answer. Mr. X makes 1 friend in the first year, 2 in the second year, so he has in total 1+2 friends
in the second year. At the end of m-th year he will have 1 + 2 + . . . 2m−1 = 2m− 1 friends. Now let
us select the smallest m such that 2m − 1 ≥ n. Observe that by this definition, after year m− 1, he
had strictly less than n friends, and after year m he can actually have much more than n friends.
However, m is still the right answer, because we are counting whole years.

Expressing m in terms of n, we have m = dlg(n + 1)e 1. We have to use the ceiling function here
because n+ 1 may not be a power of 2, and we need to take the next integer to get a proper count.

Exercise 3. Suppose we throw k balls into n bins randomly, what is the probability that bin 1
remains empty?

Answer. Pr[bin 1 is empty after 1 throw] = 1 − 1
n . Therefore, Pr[bin 1 is empty after k throw] =

(1− 1
n)k.

Exercise 4. Show that for a unit grid in a plane (as above), |v1 − v2|1 = Θ(|v1 − v2|2), for any v1, v2
in the graph.

1The d•e symbol stands for the function ceiling implying the integer greater than or equal to its argument.
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Proof: To prove |v1 − v2|1 = Θ(|v1 − v2|2) we need to find constants c1 and c2 such that

c1|v1 − v2|2 ≤ |v1 − v2|1 ≤ c2|v1 − v2|2,

which is equivalent to

c1
√

(x1 − x2)2 + (y1 − y2)2 ≤ |x1 − x2|+ |y1 − y2| ≤ c2
√

(x1 − x2)2 + (y1 − y2)2.

Raising everything to the power 2 we get

c21((x1−x2)
2 +(y1−y2)

2) ≤ (x1−x2)
2 +(y1−y2)

2 +2|x1−x2||y1−y2| ≤ c22((x1−x2)
2 +(y1−y2)

2).

By subtracting (x1 − x2)
2 + (y1 − y2)

2 the inequalities become

(c21 − 1)((x1 − x2)
2 + (y1 − y2)

2) ≤ 2|x1 − x2||y1 − y2| ≤ (c22 − 1)((x1 − x2)
2 + (y1 − y2)

2).

The first inequality is

(c21 − 1)((x1 − x2)
2 + (y1 − y2)

2) ≤ 2|x1 − x2||y1 − y2|

and it is easy to see that if c2 − 1 = 0, so if c1 = 1 it is satisfied.

For the second inequality we can use that 2ab ≤ a2 + b2 for any real a, b. Therefore c22 − 1 = 1
satisfies the inequality, so c2 =

√
2.

To conclude, we have that

|v1 − v2|2 ≤ |v1 − v2|1 ≤
√

2|v1 − v2|2,

which means that |v1 − v2|1 = Θ(|v1 − v2|2).

[Comments: 1. There is a geometric way of proving this. Try it yourself. 2. The constants 1 and√
2 derived above are exact, but there is a slightly less complex way to prove for constants 1 and

2. ] �

Exercise 5. Show that for a unit grid, |Br(v)| = O(r2).

Proof: The number of vertices inside a circle of radius r cannot be more than the number of ver-
tices inside a grid (2r+ 1)× (2r+ 1), which has (2r+ 1)2 vertices. Therefore, |Br(v)| ≤ (2r+ 1)2 =
4r2 + 4r + 1 = O(r2). �
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