
What is TDD

WHAT IS TDD

 Test-Driven Development (or test driven design) is
a methodology.

Common TDD misconception:
 TDD is not about testing

 TDD is about design and development

 By testing first you design your code

WHAT IS TDD

 Short development iterations.

 Based on requirement and pre-written test cases.

 Produces code necessary to pass that iteration's
test.

 Refactor both code and tests.

 The goal is to produce working clean code that
fulfills requirements.

TEST-DRIVEN DEVELOPMENT

 Test-driven development (TDD) is a software
development technique that uses short
development iterations based on pre-written test
cases that define desired improvements or new
functions. Each iteration produces code necessary
to pass that iteration's tests. Finally, the
programmer or team refactors the code to
accommodate changes. A key TDD concept is that
preparing tests before coding facilitates rapid
feedback changes. Note that test-driven
development is a software design method, not
merely a method of testing.

Kent Beck defines:
• Never write a single line of code unless you

have a failing automated test.
• Eliminate duplication.

Principle of TDD

TDD

Red (Automated test fail)
Green (Automated test pass because dev code has been written)
Refactor (Eliminate duplication, Clean the code)

HOW DOES TDD HELP

 TDD helps you produce clean working code that
fulfills requirements

 Write Test Code
 Code that fulfills requirements

 Write Functional Code
 Working code that fulfills requirements

 Refactor
 Clean working code that fulfills requirements

TDD BASICS - UNIT TESTING

 Red, Green, Refactor

 Make it Fail
 No code without a failing test

 Make it Work
 As simply as possible

 Make it Better
 Refactor

HOW DOES TDD HELP

TDD CYCLE

 Write Test Code
 Guarantees that every functional code is testable
 Provides a specification for the functional code
 Helps to think about design
 Ensure the functional code is tangible

 Write Functional Code
 Fulfill the requirement (test code)
 Write the simplest solution that works
 Leave Improvements for a later step
 The code written is only designed to pass the test

 no further (and therefore untested code is not created).

 Refactor
 Clean-up the code (test and functional)
 Make sure the code expresses intent
 Remove code smells
 Re-think the design
 Delete unnecessary code

Principle of TDD (In Practice)

Red

TDD

Green

Refactor

Principle of TDD (In Practice)
Write a Test

Start

Red

TDD

Green

Refactor

Principle of TDD (In Practice)
Write a Test

Run the Test

Start

Red

TDD

Green

Refactor

Principle of TDD (In Practice)
Write a Test

Run the Test

Start

See it fail
because there’s
no dev code

Red

TDD

Green

Refactor

Principle of TDD (In Practice)
Write a Test

Run the Test

Write (just enough)
Dev Code to compile

Start

See it fail
because there’s
no dev code

Red

TDD

Green

Refactor

Principle of TDD (In Practice)
Write a Test

Run the Test

Write (just enough)
Dev Code to compile

Start

See it fail
because there’s
no dev code

Red

TDD

Run the TestGreen

Refactor

Principle of TDD (In Practice)
Write a Test

Run the Test

Write (just enough)
Dev Code to compile

Start

See it fail
because there’s
no dev code

See it fail
because no logic

Red

TDD

Run the Testbecause no logic
is implemented

Green

Refactor

Principle of TDD (In Practice)
Write a Test

Run the Test

Write (just enough)
Dev Code to compile

Start

See it fail
because there’s
no dev code

See it fail
because no logic

Red

TDD

Run the Test

Write (just enough)
Dev Code to pass

because no logic
is implemented

Green

Refactor

Principle of TDD (In Practice)
Write a Test

Run the Test

Write (just enough)
Dev Code to compile

Start

See it fail
because there’s
no dev code

See it fail
because no logic

Red

TDD

Run the Test

Write (just enough)
Dev Code to pass

because no logic
is implemented

Run the Test

Green

Refactor

Principle of TDD (In Practice)
Write a Test

Run the Test

Write (just enough)
Dev Code to compile

Start

See it fail
because there’s
no dev code

See it fail
because no logic

Red

TDD

Run the Test

Write (just enough)
Dev Code to pass

because no logic
is implemented

Run the Test
See the
test pass

Green

Refactor

Principle of TDD (In Practice)
Write a Test

Run the Test

Write (just enough)
Dev Code to compile

Start

See it fail
because there’s
no dev code

See it fail
because no logic

Red

TDD
Refactoring

Run the Test

Write (just enough)
Dev Code to pass

because no logic
is implemented

Run the Test
See the
test pass

Green

Refactor

Principle of TDD (In Practice)
Write a Test

Run the Test

Write (just enough)
Dev Code to compile

Start

See it fail
because there’s
no dev code

See it fail
because no logic

Red

TDD
Refactoring

Run the Test

Write (just enough)
Dev Code to pass

because no logic
is implemented

Run the Test
See the
test pass

Green

Refactor

Why TDD

WHY / BENEFITS

 Confidence in change
 Increase confidence in code
 Fearlessly change your code

 Document requirements

 Discover usability issues early

 Regression testing = Stable software = Quality
software

0%

20%

40%

60%

80%

100%

120%

140%

160%

Time To Code Feature

Time To Code Feature using TDD

Defect density of team

Defect density of team using TDD

IS TDD A WASTE OF TIME (MICROSOFT RESEARCH)

Major quality improvement for minor time
investment
Major quality improvement for minor time
investment

ADVANTAGES OF TDD
 TDD shortens the programming feedback loop
 TDD promotes the development of high-quality

code
 User requirements more easily understood
 Reduced interface misunderstandings
 TDD provides concrete evidence that your

software works
 Reduced software defect rates
 Better Code
 Less Debug Time.

13

DISADVANTAGES OF TDD
 Programmers like to code, not to test
 Test writing is time consuming
 Test completeness is difficult to judge
 TDD may not always work

14

How to

EXAMPLE
 We want to develop a method that, given two

Integers, returns an Integer that is the sum of
parameters.

16

EXAMPLE (CONT.)
 Test

Integer i =
new Integer(5);

Integer j =
new Interger(2);

Object o = sum(i,j);

 Method

17

EXAMPLE (CONT.)
 Test

Integer i =
new Integer(5);

Integer j =
new Interger(2);

Object o = sum(i,j);

 Method

public static Object
sum(Integer i,

Integer j) {
return new Object();

}

18

EXAMPLE (CONT.)
 Test

Integer i =
new Integer(5);

Integer j =
new Interger(2);

Object o = sum(i,j);
if (o instanceof
 Integer)
return true;

else
return false;

 Method

public static Object
sum(Integer i,

Integer j) {
return new Object();

}

19

EXAMPLE (CONT.)
 Test

Integer i =
new Integer(5);

Integer j =
new Interger(2);

Object o = sum(i,j);
if (o instanceof
 Integer)
return true;

else
return false;

 Method

public static Integer
sum(Integer i,

Integer j) {
return new
Integer();

}

20

EXAMPLE (CONT.)
 Test

Integer i =
new Integer(5);

Integer j =
new Interger(2);

Object o = sum(i,j);
if ((o instanceof
 Integer) &&
 ((new Integer(7))

.equals(o))
return true;

else
return false;

 Method

public static Integer
sum(Integer i,

Integer j) {
return new
Integer();

}

21

EXAMPLE (CONT.)
 Test

Integer i =
new Integer(5);

Integer j =
new Interger(2);

Object o = sum(i,j);
if ((o instanceof
 Integer) &&
 ((new Integer(7))

.equals(o))
return true;

else
return false;

 Method

public static Integer
sum(Integer i,

Integer j) {
return new Integer(

 i.intValue() +
 j.intValue());
}

22

REMEMBER - THERE ARE OTHER KINDS OF
TESTS

 Unit test (Unit)
 Integration test (Collaboration)
 User interface test (Frontend)
 Regression test (Continuous Integration)
 …, System, Performance, Stress, Usability, …

Test types:
 Black-box test
 White-box test

The only tests relevant to TDD is Black-box Unit
Testing

The only tests relevant to TDD is Black-box Unit
Testing

HOW TO DO TDD

 … on my component A?
 Unit Test A, but what about B, C, D…?

BDEA

A

E

D

C

B

HOW TO DO TDD

 … on my component A?

 If my component reference…
 My coworkers component
 A third party component
 A very slow component (Database, Web service)
 A component with complex set up
 A component with exceptional behavior (Exception)
 A remote component (Remoting)
 Circular dependency

 Do I have to wait on these components to be
created and/or tested?

This, and the previous slide,
are all thoughts on implementing tests on existing

code.

This is all White-box Unit- or Integration Testing
 and has therefore nothing to do with TDD.

In TDD you write a Black-box Unit test that fails,
first,

and worry about the code implementation later.

This, and the previous slide,
are all thoughts on implementing tests on existing

code.

This is all White-box Unit- or Integration Testing
 and has therefore nothing to do with TDD.

In TDD you write a Black-box Unit test that fails,
first,

and worry about the code implementation later.

SINGLE MOST IMPORTANT THING
WHEN LEARNING TDD

Do not
write the code in your

head
before you write the

test

SINGLE MOST IMPORTANT THING
 WHEN LEARNING TDD

 When you first start at doing TDD you "know" what
the design should be. You "know" what code you
want to write. So you write a test that will let you
write that bit of code.

 When you do this you aren't really doing TDD –
since you are writing the code first (even if the
code is only in your head)

 It takes some time to (and some poking by clever
folk) to realize that you need to focus on the test.
Write the test for the behavior you want - then
write the minimal code needed to make it pass -
then let the design emerge through refactoring.
Repeat until done.

Where to begin

UNBOUNDED STACK EXAMPLE

 Requirement: FILO / LIFO messaging system

 Brainstorm a list of tests for the requirement:
 Create a Stack and verify that IsEmpty is true.
 Push a single object on the Stack and verify that IsEmpty is false.
 Push a single object, Pop the object, and verify that IsEmpty is true.
 Push a single object, remembering what it is; Pop the object, and verify

that the two objects are equal.
 Push three objects, remembering what they are; Pop each one, and verify

that they are removed in the correct order.
 Pop a Stack that has no elements.
 Push a single object and then call Top. Verify that IsEmpty is false.
 Push a single object, remembering what it is; and then call Top. Verify

that the object that is returned is the same as the one that was pushed.
 Call Top on a Stack with no elements.

UNBOUNDED STACK EXAMPLE

 Choosing the First Test?
 The simplest.
 The essence.

Answers:
 If you need to write code that is untested, choose a

simpler test.

 If the essence approach takes to much time to
implement, choose a simpler test.

UNBOUNDED STACK EXAMPLE

 Anticipating future tests, or not?

Answers:
 In the beginning, focus on the test you are writing,

and do not think of the other tests.

 As you become familiar with the technique and the
task, you con increase the size of the steps.

 But remember still, no written code must be
untested.

WHERE TO GO FROM HERE

 You don’t have to start big
 Start new tasks with TDD
 Add Tests to code that you need to change or

maintain – but only to small parts
 Proof of concept

If it's worth building, it's worth testing.
If it's not worth testing,

why are you wasting your time working on
it?

If it's worth building, it's worth testing.
If it's not worth testing,

why are you wasting your time working on
it?

SUMMARY

LINKS

 Books
 Test-Driven Development in Microsoft® .NET (

http://www.amazon.co.uk/gp/product/0735619484)
 Test-Driven Development by Kent Beck (C++) (

http://www.amazon.co.uk/gp/product/0321146530)

 Other links:
 http://en.wikipedia.org/wiki/Test-driven_development
 http://www.testdriven.com/
 http://www.mockobjects.com/ - Online TDD book:

http://www.martinfowler.com/articles/mocksArentStubs.html
http://www.mockobjects.com/book/index.html

 http://dannorth.net/introducing-bdd
 http://behaviour-driven.org/Introduction

http://www.amazon.co.uk/gp/product/0735619484
http://www.amazon.co.uk/gp/product/0321146530
http://en.wikipedia.org/wiki/Test-driven_development
http://www.testdriven.com/
http://www.mockobjects.com/
http://www.martinfowler.com/articles/mocksArentStubs.html
http://www.mockobjects.com/book/index.html
http://dannorth.net/introducing-bdd
http://behaviour-driven.org/Introduction

