
Course Review

Ajitha Rajan

Ajitha Rajan Course Review c©2015

Software Faults, Errors & Failures

• Software Fault : A static defect in the software

• Software Failure : External, incorrect behavior with
respect to the requirements or other description of
the expected behavior

• Software Error : An incorrect internal state that is the
manifestation of some fault

Introduction to Software Testing, Edition

2 (Ch 1)
© Ammann & Offutt 5

Summary: Why Do We Test Software ?

Introduction to Software

Testing, Edition 2 (Ch 1)
© Ammann & Offutt 13

A tester’s goal is to eliminate faults

as early as possible

• Improve quality

• Reduce cost

• Preserve customer satisfaction

Functional testing

(c) 2007 Mauro Pezzè & Michal Young Ch 10, slide 1

Functional testingFunctional testing

• Functional testing: Deriving test cases from • Functional testing: Deriving test cases from
program specifications

• Functional refers to the source of information used in test • Functional refers to the source of information used in test
case design, not to what is tested

• Also known as:Also known as:
– specification-based testing (from specifications)
– black-box testing (no view of the code)black box testing (no view of the code)

• Functional specification = description of
intended program behaviorintended program behavior
– either formal or informal

(c) 2007 Mauro Pezzè & Michal Young Ch 10, slide 3

Systematic vs Random TestingSystematic vs Random Testing

• Random (uniform):• Random (uniform):
– Pick possible inputs uniformly
– Avoids designer biasAvoids designer bias

• A real problem: The test designer can make the same
logical mistakes and bad assumptions as the program
designer (especially if they are the same person)designer (especially if they are the same person)

– But treats all inputs as equally valuable
• Systematic (non-uniform):• Systematic (non uniform):

– Try to select inputs that are especially valuable
– Usually by choosing representatives of classes that Usually by choosing representatives of classes that

are apt to fail often or not at all
• Functional testing is systematic testing

(c) 2007 Mauro Pezzè & Michal Young Ch 10, slide 4

g y g

Functional testing: exploiting the
specification

• Functional testing uses the specification • Functional testing uses the specification
(formal or informal) to partition the input
spacespace
– E.g., specification of “roots” program suggests

division between cases with zero one and two real division between cases with zero, one, and two real
roots

• Test each category and boundaries between • Test each category, and boundaries between
categories

No guarantees but experience suggests failures – No guarantees, but experience suggests failures
often lie at the boundaries (as in the “roots”
program)

(c) 2007 Mauro Pezzè & Michal Young Ch 10, slide 9

p g)

Combinatorial testing

(c) 2007 Mauro Pezzè & Michal Young Ch 11, slide 1

Combinatorial testing: Basic ideaCombinatorial testing: Basic idea

• Identify distinct attributes that can be varied • Identify distinct attributes that can be varied
– In the data, environment, or configuration

Example: browser could be “IE” or “Firefox” – Example: browser could be “IE” or “Firefox”,
operating system could be “Vista”, “XP”, or “OSX”

Systematically generate combinations to be • Systematically generate combinations to be
tested

E l IE Vi t IE XP Fi f Vi t – Example: IE on Vista, IE on XP, Firefox on Vista,
Firefox on OSX, ...

R ti l T t h ld b i d d • Rationale: Test cases should be varied and
include possible “corner cases”

(c) 2007 Mauro Pezzè & Michal Young Ch 11, slide 3

Key ideas in combinatorial approachesKey ideas in combinatorial approaches

• Category-partition testing• Category partition testing
– separate (manual) identification of values that characterize the

input space from (automatic) generation of combinations
for test cases

• Pairwise testing
t ti ll t t i t ti tt ib t f th – systematically test interactions among attributes of the

program input space with a relatively small number of test
cases

• Catalog-based testing
– aggregate and synthesize the experience of test designers in a

ti l i ti li ti d i t id i particular organization or application domain, to aid in
identifying attribute values

(c) 2007 Mauro Pezzè & Michal Young Ch 11, slide 4

Category partition (manual steps)Category partition (manual steps)

1. Decompose the specification into independently 1. Decompose the specification into independently
testable features
– for each feature identify

• parameters
• environment elements

– for each parameter and environment element identify
elementary characteristics (categories)

2. Identify relevant values
for each characteristic (category) identify (classes of) values– for each characteristic (category) identify (classes of) values
• normal values
• boundary values

i l l• special values
• error values

3. Introduce constraints

(c) 2007 Mauro Pezzè & Michal Young Ch 11, slide 5

Example: Display ControlExample: Display Control

No constraints reduce the total number of combinations No constraints reduce the total number of combinations
432 (3x4x3x4x3) test cases

if we consider all combinations

Display Mode Language Fonts Color Screen size

full-graphics English Minimal Monochrome Hand-held

text-only French Standard Color-map Laptop

limited-
bandwidth

Spanish Document-
loaded

16-bit Full-size

Portuguese True-color

(c) 2007 Mauro Pezzè & Michal Young Ch 11, slide 25

Pairwise combinations: 17 test cases
Language Color Display Mode Fonts Screen Size

English Monochrome Full-graphics Minimal Hand-held

English Color-map Text-only Standard Full-sizeEnglish Color map Text only Standard Full size

English 16-bit Limited-bandwidth - Full-size

English True-color Text-only Document-loaded Laptop

French Monochrome Limited bandwidth Standard LaptopFrench Monochrome Limited-bandwidth Standard Laptop

French Color-map Full-graphics Document-loaded Full-size

French 16-bit Text-only Minimal -

French True-color - - Hand-held

Spanish Monochrome - Document-loaded Full-size

Spanish Color-map Limited-bandwidth Minimal Hand-held

Spanish 16-bit Full-graphics Standard Laptop

Spanish True-color Text-only - Hand-held

Portuguese - - Monochrome Text-only

Portuguese Color-map - Minimal Laptop

Portuguese 16-bit Limited-bandwidth Document-loaded Hand-held

(c) 2007 Mauro Pezzè & Michal Young Ch 11, slide 26

Portuguese True-color Full-graphics Minimal Full-size

Portuguese True-color Limited-bandwidth Standard Hand-held

NextNext ...

• Category partition approach gives us • Category-partition approach gives us ...
– Separation between (manual) identification of

parameter characteristics and values and parameter characteristics and values and
(automatic) generation of test cases that combine
them

– Constraints to reduce the number of combinations

• Pairwise (or n-way) testing gives us ... Pairwise (or n way) testing gives us ...
– Much smaller test suites, even without constraints

• (but we can still use constraints)(but we can still use constraints)

• We still need ...
– Help to make the manual step more systematic

(c) 2007 Mauro Pezzè & Michal Young Ch 11, slide 29

– Help to make the manual step more systematic

Catalog based testingCatalog based testing
• Deriving value classes requires human judgment
• Gathering experience in a systematic collection can:

– speed up the test design process
routinize many decisions better focusing human effort– routinize many decisions, better focusing human effort

– accelerate training and reduce human error

• Catalogs capture the experience of test designers by g p p g y
listing important cases for each possible type of
variable

Example: if the computation uses an integer variable a catalog – Example: if the computation uses an integer variable a catalog
might indicate the following relevant cases

• The element immediately preceding the lower bound
Th l b d f h i l• The lower bound of the interval

• A non-boundary element within the interval
• The upper bound of the interval

(c) 2007 Mauro Pezzè & Michal Young Ch 11, slide 30

• The element immediately following the upper bound

Catalog based testing processCatalog based testing process

Step1:Step1:
Analyze the initial specification to identify simple elements:
– Pre-conditions
– Post-conditions
– Definitions

Variables– Variables
– Operations

Step 2:p
Derive a first set of test case specifications from pre-conditions,
post-conditions and definitions

Step 3:Step 3:
Complete the set of test case specifications using test catalogs

(c) 2007 Mauro Pezzè & Michal Young Ch 11, slide 31

Finite Models

(c) 2007 Mauro Pezzè & Michal Young Ch 5, slide 1

Example of Control Flow GraphExample of Control Flow Graph
public static String collapseNewlines(String argStr)

{{
char last = argStr.charAt(0);
StringBuffer argBuf = new StringBuffer();

for (int cIdx = 0 ; cIdx < argStr.length(); cIdx++)for (int cIdx 0 ; cIdx argStr.length(); cIdx)
{

char ch = argStr.charAt(cIdx);
if (ch != '\n' || last != '\n')
{{

argBuf.append(ch);
last = ch;

}
}}

return argBuf.toString();
}

(c) 2007 Mauro Pezzè & Michal Young Ch 5, slide 9

Structural Testing

(c) 2007 Mauro Pezzè & Michal Young Ch 12, slide 1

“Structural” testingStructural testing

• Judging test suite thoroughness based on the • Judging test suite thoroughness based on the
structure of the program itself

Also known as “white box” “glass box” or “code– Also known as white-box , glass-box , or code-
based” testing

– To distinguish from functional (requirements-based – To distinguish from functional (requirements-based,
“black-box” testing)

– “Structural” testing is still testing product functionality
against its specification. Only the measure of thoroughness
has changed.

(c) 2007 Mauro Pezzè & Michal Young Ch 12, slide 3

Structural testing complements
functional testing

• Control flow testing includes cases that may not • Control flow testing includes cases that may not
be identified from specifications alone

Typical case: implementation of a single item of the – Typical case: implementation of a single item of the
specification by multiple parts of the program

– Example: hash table collision (invisible in interface – Example: hash table collision (invisible in interface
spec)

• Test suites that satisfy control flow adequacy • Test suites that satisfy control flow adequacy
criteria could fail in revealing faults that can be
caught with functional criteriacaught with functional criteria
– Typical case: missing path faults

(c) 2007 Mauro Pezzè & Michal Young Ch 12, slide 6

Subsumption relationSubsumption relation

(c) 2007 Mauro Pezzè & Michal Young Ch 12, slide 35

SummarySummary

• We defined a number of adequacy criteria We defined a number of adequacy criteria
– NOT test design techniques!

• Different criteria address different classes of errors
• Full coverage is usually unattainable

– Remember that attainability is an undecidable problem!

d h i bl “i i ” i ll h d• …and when attainable, “inversion” is usually hard
– How do I find program inputs allowing to cover something

buried deeply in the CFG?p y
– Automated support (e.g., symbolic execution) may be

necessary

• Therefore rather than requiring full adequacy the • Therefore, rather than requiring full adequacy, the
“degree of adequacy” of a test suite is estimated by
coverage measures

(c) 2007 Mauro Pezzè & Michal Young Ch 12, slide 38

– May drive test improvement

Activity

◼ Write tests that provide statement, branch, and basic
condition coverage over the following code:

int search(string A[], int N, string what){
 int index = 0;
 if ((N == 1) && (A[0] == what)){

return 0;
 } else if (N == 0){
 return -1;
 } else if (N > 1){

 while(index < N){
 if (A[index] == what)

 return index;
 else
 index++;
 }
 }

 return -1;
}

Activity - Possible Solution

◼ Write tests that provide statement, branch, and basic
condition coverage over the following code:

index=0

(N==1) &&
(A[0] = what)

return 0;

N==0

False

True

return -1;

True

N>1

False

return -1;

False

index
< N

True

A[index]
== what

True

return index;True

index++;

False

False

Activity - Possible Solution

◼ Write tests that provide statement, branch, and basic
condition coverage over the following code:

index=0

(N==1) &&
(A[0] = what)

return 0;

N==0

False

True

return -1;

True

N>1

False

return -1;

False

index
< N

True

A[index]
== what

True

return index;True

index++;

False

False

1: A[“Bob”, “Jane”], 2, “Jane”
2: A[“Bob”, “Jane”], 2, “Spot”
3: A[], 0, “Bob”
4. A[“Bob”], 1, “Bob”

5. A[“Bob”], 1, “Spot”

Dependence and Data Flow Models

(c) 2007 Mauro Pezzè & Michal Young Ch 6, slide 1

Def-Use PairsDef Use Pairs

...
if (...) { if (...) {

...

Definition:
x = ... ;

...
} x = ...

if (...) {
x gets a
value

}
y = ... + x + ... ;

...
Use: the value

y = + x +

Use: the value
of x is

extractedDef-Use
path y ... + x + ...

...

(c) 2007 Mauro Pezzè & Michal Young Ch 6, slide 5

Definition-Clear or KillingDefinition-Clear or Killing

 // A d f x = ... // A: def x
q = ...
x = y; // B: kill x, def x
z x =

...
Definition: x
gets a valueA

z = ...
y = f(x); // C: use x

x = ...

...

gets a value

Definition: x gets

x = y

Definition: x gets
a new value, old

value is killedB
Path A..C is
not definition-clear

Use: the value
of x is

...

f()C

Path B..C is
definition-clear of x is

extractedy = f(x)C

(c) 2007 Mauro Pezzè & Michal Young Ch 6, slide 8

Data flow testing

(c) 2007 Mauro Pezzè & Michal Young Ch 13, slide 1

TermsTerms

• DU pair: a pair of definition and use for some • DU pair: a pair of definition and use for some
variable, such that at least one DU path exists
from the definition to the usefrom the definition to the use
x = ... is a definition of x
 x is a use of x= ... x ... is a use of x

• DU path: a definition-clear path on the CFG
t ti f d fi iti t f starting from a definition to a use of a same

variable
– Definition clear: Value is not replaced on path
– Note – loops could create infinite DU paths between

 d f d

(c) 2007 Mauro Pezzè & Michal Young Ch 13, slide 5

a def and a use

Adequacy criteriaAdequacy criteria

• All DU pairs: Each DU pair is exercised by at • All DU pairs: Each DU pair is exercised by at
least one test case
All DU th E h i l (l i) DU th • All DU paths: Each simple (non looping) DU path
is exercised by at least one test case

• All definitions: For each definition, there is at
least one test case which exercises a DU pair
containing it
– (Every computed value is used somewhere)

Corresponding coverage fractions can also be
defined

(c) 2007 Mauro Pezzè & Michal Young Ch 13, slide 7

Model based testing

(c) 2007 Mauro Pezzè & Michal Young Ch 14, slide 1

NO
Maintenance

at reb

0

…to a finite
stateM i t

request at

maintenance station

(no warranty)

request
by phone or web

[US or EU resident]

(contract number)

st
 a

t
ce

 s
ta

tio
n

ss
 c

ou
rie

r
nu

m
be

r)

W it f

pick up return

1 2 3 state
machine…

 Maintenance
(no warranty)

tim
at

e
os

ts

Wait for
pick up

pick up

re
qu

es
m

ai
nt

en
an

c
or

 b
y

ex
pr

es
(c

on
tra

ct
 nWait for

returning

reject e

invalidcontract
numbe

3

es
t co

Repair
(maintenance

station)

pick

Wait for
acceptance

accept
estimate

t estimate

Repairedrepair completed

ber

4 5 6

succe
ssf

ul re
pair

unable to repair

(US or EU residck
co

mponent (a
)

component
arrives (a)

Repair
(regional

headquarters)

suirident)

su
cc

es
sfu

l r
ep

air

Wait for
component

lack

lack component (b)

arrives (a)

7 8

su

unable to
repair

lack component (component

component
arrives (b)

unable to repair
(not US or EU resident)

(c) 2007 Mauro Pezzè & Michal Young Ch 14, slide 7

Repair
(main

headquarters)

nt (c)
p

arrives (c)
9

Testing Object Oriented Software

Chapter 15p

Characteristics of OO Software

15.2

Characteristics of OO Software
Typical OO software characteristics that impact

itesting
• State dependent behavior
• Encapsulation
• Inheritance
• Polymorphism and dynamic binding
• Abstract and generic classesAbstract and generic classes
• Exception handling

(c) 2008 Mauro Pezzè & Michal Young Ch 15, slide 3

Interclass Testing

15.6

Interclass Testing

• The first level of integration testing for object• The first level of integration testing for object-
oriented software

Focus on interactions between classes– Focus on interactions between classes

• Bottom-up integration according to “depends”
l tirelation

– A depends on B: Build and test B, then A

• Start from use/include hierarchy
– Implementation-level parallel to logical “depends” relation

Cl A k th d ll l B• Class A makes method calls on class B
• Class A objects include references to class B methods

– but only if reference means “is part of”but only if reference means is part of

(c) 2008 Mauro Pezzè & Michal Young Ch 15, slide 15

OrderCustomer

1 *

Account

1 0..*

Package

1 *

LineItem

1

*
USAccount OtherAccount

CustomerCare

*

*

SimpleItem
UKAccountJPAccount EUAccount

CompositeItem

Model ComponentPriceList

*
*

*
*

from a class
diagram

Model Component

1 * 1 0..1

PriceList

* *diagram... Slot

1
*
1 1

ModelDB ComponentDBSlotDB

(c) 2008 Mauro Pezzè & Michal Young Ch 15, slide 16

CSVdb

to a hierarchy....to a hierarchy
OrderCustomer Package

Component
USAccount OtherAccount

P i Li t ComponentPriceListCustomerCare

Model
UKAccountJPAccount EUAccount

ComponentDB

Slot

M d lDBNote: we may have ModelDB SlotDBNote: we may have
to break loops and
generate stubs

(c) 2008 Mauro Pezzè & Michal Young Ch 15, slide 17

g

Intraclass data flow testingIntraclass data flow testing

• Exercise sequences of methods • Exercise sequences of methods
– From setting or modifying a field value

To using that field value– To using that field value

W d l fl h h • We need a control flow graph that encompasses
more than a single method ...

(c) 2008 Mauro Pezzè & Michal Young Ch 15, slide 22

The intraclass control flow graphThe intraclass control flow graph
Control flow for each method
+
node for class
+

Method
addComponent

Method
selectModel

edges
from node class to the start

nodes of the methods
from the end nodes of the

methods to node class Method
checkConfiguration

=> control flow through sequences
of method calls

g

class Model

(c) 2008 Mauro Pezzè & Michal Young

class Model

Ch 15, slide 23

© Lionel Briand 2010
2

Mutation Testing

© Lionel Briand 2010
9

•  Constant replacement
•  Scalar variable replacement
•  Scalar variable for constant

 replacement
•  Constant for scalar variable

 replacement
•  Array reference for constant

 replacement
•  Array reference for scalar

 variable replacement
•  Constant for array reference

 replacement
•  Scalar variable for array

 reference replacement
•  Array reference for array

 reference replacement

•  Source constant replacement
•  Data statement alteration
•  Comparable array name

 replacement
•  Arithmetic operator replacement
•  Relational operator replacement
•  Logical connector replacement
•  Absolute value insertion
•  Unary operator insertion
•  Statement deletion
•  Return statement replacement

Regression Testing

Ajitha Rajan

Example

Version 1

Feature A

Feature B

Tests

Version 2

Feature A

Feature B

Old
Tests

Feature C

+ New
Tests

Regression Tests for
the next version

Regression Test Optimization

➔Re-test All

➔Regression Test Selection

➔Regression Test Set Minimisation

➔Regression Test Set Prioritisation

Integration and Component basedIntegration and Component-based
Software Testing

(c) 2007 Mauro Pezzè & Michal Young Ch 21, slide 1

What is integration testing?What is integration testing?
Module test Integration test System testModule test Integration test System test

Specification: Module
interface

Interface specs,
module breakdown

Requirements
specification

Visible structure: Coding details Modular structure
(software architecture)

— none —
()

Scaffolding Some Often extensive SomeScaffolding
required:

Some Often extensive Some

Looking for faults Modules Interactions System Looking for faults
in:

Modules Interactions,
compatibility

System
functionality

(c) 2007 Mauro Pezzè & Michal Young Ch 21, slide 3

Top downTop down ..

Top

A stub B stub Cstub B stub C

stub Ystub X

Write stubs of called or
used modules at each
step in constructionstep in construction

(c) 2007 Mauro Pezzè & Michal Young Ch 21, slide 16

Bottom UpBottom Up ..

Driver Driver but we must Driver ... but we must
construct drivers for
each module (as in

YX

(
unit testing) ...

Y

(c) 2007 Mauro Pezzè & Michal Young Ch 21, slide 20

System Acceptance and RegressionSystem, Acceptance, and Regression
Testing

(c) 2007 Mauro Pezzè & Michal Young Ch 22, slide 1

System TestingSystem Testing

• Key characteristics: • Key characteristics:
– Comprehensive (the whole system, the whole spec)

Based on specification of observable behavior– Based on specification of observable behavior
Verification against a requirements specification, not
validation, and not opinions

– Independent of design and implementation

Independence: Avoid repeating software design
errors in system test designerrors in system test design

(c) 2007 Mauro Pezzè & Michal Young Ch 22, slide 5

Global PropertiesGlobal Properties

• Some system properties are inherently global• Some system properties are inherently global
– Performance, latency, reliability, ...

Early and incremental testing is still necessary but – Early and incremental testing is still necessary, but
provide only estimates

A major focus of system testing• A major focus of system testing
– The only opportunity to verify global properties

against actual system specificationsagainst actual system specifications
– Especially to find unanticipated effects, e.g., an

unexpected performance bottleneckunexpected performance bottleneck

(c) 2007 Mauro Pezzè & Michal Young Ch 22, slide 9

Context-Dependent PropertiesContext-Dependent Properties

• Beyond system global: Some properties depend • Beyond system-global: Some properties depend
on the system context and use

Example: Performance properties depend on – Example: Performance properties depend on
environment and configuration

– Example: Privacy depends both on system and how it – Example: Privacy depends both on system and how it
is used

• Medical records system must protect against unauthorized y p g
use, and authorization must be provided only as needed

– Example: Security depends on threat profiles
• And threats change!

• Testing is just one part of the approach

(c) 2007 Mauro Pezzè & Michal Young Ch 22, slide 10

22.3

Acceptance testing
22.3

(c) 2007 Mauro Pezzè & Michal Young Ch 22, slide 13

Estimating DependabilityEstimating Dependability

• Measuring quality not searching for faults• Measuring quality, not searching for faults
– Fundamentally different goal than systematic testing

Q tit ti d d bilit l t ti ti l• Quantitative dependability goals are statistical
– Reliability
– Availability
– Mean time to failure
– ...

• Requires valid statistical samples from
operational profile
– Fundamentally different from systematic testing

(c) 2007 Mauro Pezzè & Michal Young Ch 22, slide 14

3

V-model

Ajitha Rajan Testing in the Lifecycle c©2015-16

8

eXtreme Programming (XP)

http://www.extremeprogramming.org/map/project.html

Ajitha Rajan Testing in the Lifecycle c©2015-16

http://www.extremeprogramming.org/map/project.html

HOW DOES TDD HELP

TDD CYCLE

 Write Test Code
 Guarantees that every functional code is testable
 Provides a specification for the functional code
 Helps to think about design
 Ensure the functional code is tangible

 Write Functional Code
 Fulfill the requirement (test code)
 Write the simplest solution that works
 Leave Improvements for a later step
 The code written is only designed to pass the test

 no further (and therefore untested code is not created).

 Refactor
 Clean-up the code (test and functional)
 Make sure the code expresses intent
 Remove code smells
 Re-think the design
 Delete unnecessary code

Principle of TDD (In Practice)
Write a Test

Run the Test

Write (just enough)
Dev Code to compile

Start

See it fail
because there’s
no dev code

See it fail
because no logic

Red

TDD
Refactoring

Run the Test

Write (just enough)
Dev Code to pass

because no logic
is implemented

Run the Test
See the
test pass

Green

Refactor

