Course Review

Ajitha Rajan

o School of _ ¢
informatics

Ajitha Rajan Course Review (©2015

Software Faults, Errors & Failures

e Software Fault : A static defect in the software

* Software Failure : External, incorrect behavior with
respect to the requirements or other description of
the expected behavior

e Software Error : An incorrect internal state that is the
manifestation of some fault

;nt(rgﬂulc)tlon to Software Testing, Edition © Ammann & Offutt 5

Summary: Why Do We Test Software ?

A tester’s goal is to eliminate faults
as early as possible

* Improve quality

 Reduce cost

e Preserve customer satisfaction

Introduction to Software

Testing, Edition 2 (Ch 1) ©Ammann & Offutt 13

Functional testing

SOFTWARE TESTING
it L

(c) 2007 Mauro Pezze & Michal Young Ch 10, slide 1

Ciin
=

~rtinnal +
Ul i1uL |

10Na |g
e Functional testing: Deriving test cases from

program specifications

e Functional refers to the source of information used in test
case design, not to what is tested

e Also known as:
- specification-based testing (from specifications)
- black-box testing (no view of the code)

e Functional specification = description of
Intended program behavior
- either formal or informal

SOFTWARE TESTING
8 Rt

(c) 2007 Mauro Pezze & Michal Young Ch 10, slide 3

e Random (uniform):
- Pick possible inputs uniformly

- Avoids designer bias

e A real problem: The test designer can make the same
logical mistakes and bad assumptions as the program
designer (especially if they are the same person)

- But treats all inputs as equally valuable
e Systematic (non-uniform):
- Try to select inputs that are especially valuable

- Usually by choosing representatives of classes that
are apt to fail often or not at all

...2 Functional testing is systematic testing

it L

(c) 2007 Mauro Pezze & Michal Young Ch 10, slide 4

Functional testing: exploiting the
specification
e Functional testing uses the specification
(formal or informal) to partition the input

space

- E.g., specification of “roots” program suggests
division between cases with zero, one, and two real

roots
e Test each category, and boundaries between
categories

- No guarantees, but experience suggests failures
often lie at the boundaries (as in the “roots”
program)

(c) 2007 Mauro Pezze & Michal Young Ch 10, slide 9

Combinatorial testing

SOFTWARE TESTING
it L

(c) 2007 Mauro Pezze & Michal Young Ch 11, slide 1

CAamhin
\ |

Pal AatAnrianl + DA Ve Fa
UIlIIITJITIALWLUI I u

oria |g Basic idea
e |dentify distinct attributes that can be varied

- In the data, environment, or configuration
- Example: browser could be “IE” or “Firefox”,
operating system could be “Vista”, “XP”*, or “OSX”

e Systematically generate combinations to be
tested

- Example: IE on Vista, IE on XP, Firefox on Vista,
Firefox on OSX, ...

e Rationale: Test cases should be varied and
Include possible “corner cases”

SOFTWARE TESTING
8 Rt

(c) 2007 Mauro Pezze & Michal Young Ch 11, slide 3

Al an ~rhno

\lrl 'aY s Ny faY e,
IUcT Ul |ap UIITO

<)y

Ta) mhin
N

AnC 1 raYa At
Ao 111 LVUIIIVITIAL

—!

e Category-partition testing

- separate (manual) identification of values that characterize the
Input space from (automatic) generation of combinations
for test cases

e Pairwise testing

- systematically test interactions among attributes of the
program input space with a relatively small number of test
cases

e (Catalog-based testing

- aggregate and synthesize the experience of test designers in a
particular organization or application domain, to aid in
iIdentifying attribute values

SOFTWARE TESTING
AND ANALYSIS

(c) 2007 Mauro Pezze & Michal Young Ch 11, slide 4

'l"l- NN
1 LI

{ " ||n| 'I-
LIl II\II I UQl

ne\
StEPS)

atn ¥\ /
WAL

egory pail

1. Decompose the specification into independently
testable features
— for each feature identify

e parameters
e environment elements

— for each parameter and environment element identify
elementary characteristics (categories)

2. ldentify relevant values

ﬂﬂﬂﬂﬂﬂ a2l =

N,
QJ
U)

— for each characteristic (category) identify (classes
 normal values
e boundary values
o special values
e error values

e INTroduce constraints

it L

(c) 2007 Mauro Pezze & Michal Young Ch 11, slide 5

- IAa- NDie
anmpue. Displav

spiay Cont

No constraints reduce the total number of combinations
432 (3x4x3x4x3) test cases

if we consider all combinations

Display Mode |Language Fonts Color Screen size
full-graphics English Minimal Monochrome | Hand-held
text-only French Standard Color-map Laptop
limited- Spanish Document- | 16-bit Full-size
bandwidth loaded

Portuguese True-color

SOFTWARE TESTING
AND ANALYSIS

(c) 2007 Mauro Pezze & Michal Young Ch 11, slide 25

Pairwise combinations

17/ test cases

Language Color Display Mode Fonts Screen Size
English Monochrome Full-graphics Minimal Hand-held
English Color-map Text-only Standard Full-size
English 16-bit Limited-bandwidth - Full-size
English True-color Text-only Document-loaded Laptop
French Monochrome Limited-bandwidth Standard Laptop
French Color-map Full-graphics Document-loaded Full-size
French 16-bit Text-only Minimal -
French True-color - - Hand-held
Spanish Monochrome - Document-loaded Full-size
Spanish Color-map Limited-bandwidth Minimal Hand-held
Spanish 16-bit Full-graphics Standard Laptop
Spanish True-color Text-only - Hand-held
Portuguese - - Monochrome Text-only
Portuguese Color-map - Minimal Laptop
Portuguese 16-bit Limited-bandwidth Document-loaded | Hand-held
SOFT
Portuguese True-color Full-graphics Minimal Full-size
True-color Limited-bandwidth Standard

Hand-held

\" 7

M Portuguese

~J

Naavt
INTAL ...
e Category-partition approach gives us ...

- Separation between (manual) identification of
parameter characteristics and values and
(automatic) generation of test cases that combine
them

- Constraints to reduce the number of combinations

e Pairwise (or n-way) testing gives us ...

- Much smaller test suites, even without constraints
e (but we can still use constraints)

e We still need ...
i - Help to make the manual step more systematic

(c) 2007 Mauro Pezze & Michal Young Ch 11, slide 29

(aya)
valalivy vaot

e Deriving value classes requires human judgment

e Gathering experience in a systematic collection can:
- speed up the test design process
- routinize many decisions, better focusing human effort
- accelerate training and reduce human error

e Catalogs capture the experience of test designers by
listing important cases for each possible type of
variable

- Example: if the computation uses an integer variabie a cataiog
might indicate the following relevant cases

e The element immediately preceding the lower bound
e The lower bound of the interval

e A non-boundary element within the interval

e The upper bound of the interval

e The element immediately following the upper bound

SOFTWARE TESTING
8 Rt

(c) 2007 Mauro Pezze & Michal Young Ch 11, slide 30

Stepl:
Analyze the initial specification to identify simple elements:

- Pre-conditions
- Post-conditions
- Definitions

- Variables

- Operations

Step 2:
Derive a first set of test case specifications from pre-conditions,
post-conditions and definitions

Step 3:
Complete the set of test case specifications using test catalogs

SOFTWARE TESTING
8 Rt

(c) 2007 Mauro Pezze & Michal Young Ch 11, slide 31

Finite Models

SOFTWARE TESTING
it L

(c) 2007 Mauro Pezze & Michal Young Ch 5, slide 1

Cvamnla nf CAantral Claw Cranh
LLAQIIIMNIT Ul VUILILTVUI T IUVY \JICLIJII
public static String collapseNewlines(String argStr)
public static String collapseNewlines(String argStr) J
{ { b2

char last = argStr.charAt(0);
StringBuffer argBuf = new StringBuffer();

for (int cldx = 0 ; cldx < argStr.length(); cldx++)
{
char ch = argStr.charAt(cldx);
if (ch !="\n" || last I="\n")
{
argBuf.append(ch);
last = ch;
}
}

return argBuf.toString();

SOFTWARE TESTING
AND ANALYSIS

char last = argStr.charAt(0);
StringBuffer argBuf = new StringBuffer();

for (intcldx=0;

Gldx < argStr.length(); @@4
ﬁFalse—)¥Trueﬂ
{ b4
char ch = argStr.charAt(cldx);
if (ch 1="\n'
vﬁFaIse—)gTru
<|| last 1= "\n') @5)
Tru
{ b6
argBuf.append(ch);
last = ch;
}
Fals
4

return argBuf.toString(); b8
}

(c) 2007 Mauro Pezze & Michal Young

Ch 5, slide 9

Structural Testing

SOFTWARE TESTING
it L

(c) 2007 Mauro Pezze & Michal Young Ch 12, slide 1

Qi
JLI

~ntiir
UL LUl

+Nne
U L

Al”’ +1n Y

al Colll IU

e Judging test suite thoroughness based on the
structure of the program itself

- Also known as “white-box”, “glass-box”, or “code-
based” testing

- To distinguish from functional (requirements-based,
“black-box” testing)

— “Structural” testing is still testing product functionality

against its specification. Only the measure of thoroughness
has changed.

SOFTWARE TESTING
8 Rt

(c) 2007 Mauro Pezze & Michal Young Ch 12, slide 3

Structural testing complements
functional testing

e Control flow testing includes cases that may not
be identified from specifications alone

- Typical case: implementation of a single item of the
specification by multiple parts of the program

- Example: hash table collision (invisible in interface

spec)
e Test suites that satisfy control flow adequacy

criteria could fail in revealing faults that can be
caught with functional criteria

- Typical case: missing path faults

(c) 2007 Mauro Pezze & Michal Young Ch 12, slide 6

SOFTWARE TESTING
AND ANALYSIS

Ciritheciimntinn ralat
< OUUDU“'PL'U” I CIAAL
o
L]
=
: C D
O
—
<
O
|_

i
g (Boundary interior testing)
a
|_
<
o
L]
E (Cyclomatic testing >
O
—
<
O
|—
O
&E C LCSAJ testing >
o
C Branch testing)

(Loop boundary testing) C Statement testing)

@ompound condition testin@

(MC/DC testing >
@anch and condition testi@

(Basic condition testing)

(c) 2007 Mauro Pezze & Michal Young

Ch 12, slide 35

Cirirmrmarvs
J i

aultitlial'y

e We defined a number of adequacy criteria
- NOT test design techniques!

e Different criteria address different classes of errors

e Full coverage is usually unattainable
- Remember that attainability is an undecidable problem!

e ..and when attainable, “inversion” is usually hard

- How do | find program inputs allowing to cover something
buried deeply in the CFG?

- Automated support (e.g., symbolic execution) may be
necessary

e Therefore, rather than requiring full adequacy, the

“degree of adequacy” of a test suite is estimated by
SOFTWARE TESTING Cove rag e m ea’SU reS

v7a - May drive test improvement

(c) 2007 Mauro Pezze & Michal Young Ch 12, slide 38

Write tests that provide statement, branch, and basic
condition coverage over the following code:

int search(string A[], int N, string what){
int index = 0;
if ((N == 1) && (A[0] == what)){
return 0;
} else if (N == 0){
return -1;
} else if (N > 1){
while(index < N){
if (A[index] == what)
return index;
else
index++;
}
}

return -1;

M Write tests that provide statement, branch, and basic

condition coverage over the following code:

index=0
Fals
(N==1) &&
A[0] = what

return 0;

return -1;

False

True

return -1;

index++;

True return index;

M Write tests that provide statement, branch, and basic

condition coverage over the following code:

index=6

C(NNs=%
<<I.II.IZSIE==VVhaf

True

return 0;

1: A[“Bob”, “Jane”], 2, “Jane”
2: A[“Bob”, “Jane”], 2, “Spot”

4. A[“Bob”], 1, “Bob”
5. A[“Bob™], 1, “Spot”

\ I;a-l-se L~ False

\N——U

T

True

return -1;

AN >

|

True

_Fketurn -1;

%z

True return index;

Dependence and Data Flow Models

(c) 2007 Mauro Pezze & Michal Young Ch 6, slide 1

Def-Use Pairs

[]
if () { [if () { } Definition:
X=.., X gets a
_ - \‘/\/I value
} X =...
y=..+tXxX+ : (: b
N / J | Use: the value

L of xis
D%fa:\ise f%/ extracted
yEotxE

SOFTWARE TESTING
AND ANALYSIS

(c) 2007 Mauro Pezze & Michal Young Ch 6, slide 5

NAafinitinn lnar Anr Willinm
L/CTIITILIVILI iICTAl Ul l il Iy
X=... [/ A:defx .)
q = . ags
: ' Definition: x
x=y; // B:Kkill x, def x 4 Y
z=?l.. /@ X = ... % gets a value
y = f(x); [/ Cusex) I .
Definition: x gets
Path A..C is ~ y < a new value, old
not definition-clear< @ X =y ' value is killed
e . l J
Path B..C is .) _
definition-clear A @ : N Use.O:chfi\S/alue
L \\ Y = f(X) y extracted

SOFTWARE TESTING
AND ANALYSIS

(c) 2007 Mauro Pezze & Michal Young Ch 6, slide 8

Data flow testing

SOFTWARE TESTING
it L

(c) 2007 Mauro Pezze & Michal Young Ch 13, slide 1

TAarmoe
| H1H11o

e
e DU pair: a pair of definition and use for some
variable, such that at least one DU path exists
from the definition to the use
X = ... Is a definition of x
= ... X ... Isause of x

e DU path: a definition-clear path on the CFG
starting from a definition to a use of a same
variable

- Definition clear: Value is not replaced on path

- Note - loops could create infinite DU paths between
5.?!9.5N_ﬂ§ - a def an d a use

(c) 2007 Mauro Pezze & Michal Young Ch 13, slide 5

I\Wa PaYa B EaYe
Hucquab

e All DU pairs: Each DU pair is exercised by at
least one test case

e All DU paths: Each simple (non looping) DU path
IS exercised by at least one test case

e All definitions: For each definition, there is at
least one test case which exercises a DU pair
containing It
- (Every computed value is used somewhere)

Corresponding coverage fractions can also be
SOFTWARE TESTING d efi n e d

it L

(c) 2007 Mauro Pezze & Michal Young Ch 13, slide 7

Model based testing

SOFTWARE TESTING
it L

(c) 2007 Mauro Pezze & Michal Young Ch 14, slide 1

NO
Maintenance

% ¢ e
c return - -
o ° e t
) 5 (Con 8,0 Oa e
\0\e“a a‘(a(\\\J S o __ (O/)[,. S(/ , rW@ B I n I
2\ W ST Q Qs SO
(O 530 <y,
. 8g2o Y,
584 K State
Wait for Maintenance o 8 g < Wait for
returning (no warranty) % g S § .
pust o =
h, T35 mach
) 000019/~ %3\8/ C Ine---
Q0 = 5, D €5
% = (L)
% E® (% o W
2%

Wait for
acceptance

(maintenance
station)

Repaired

7, &
% f)%/
%R
& ©
/4
component . % g
arrives (a) %6‘94 o>
&
K
<
Wait for N
lack component (b) (regional &
component &
headquarters) $
2

component
arrives (b)

unable to repair

01 a|qeun

: o,
(not US or EU resident) %o
SOFTWARE TESTING component OG/){
AND ANALYSIS . (c
ket arrives (c)

Repair
(main
headquarters)

(c) 2007 Mauro Pezze & Michal Young Ch 14, slide 7

Testing Object Oriented Software

Chapter 15

15.2

NhaAa
VI

)

Aarntarvictinre nf NN CAfhniarn
AULLCI I10oLlLIVO VI UU VuliilvvQAl ©

Typical OO software characteristics that impact
testing

e State dependent behavior

e Encapsulation

e Inheritance

e Polymorphism and dynamic binding

e Abstract and generic classes

e Exception handling

SOFTWARE TESTING
8 Rt

(c) 2008 Mauro Pezze & Michal Young Ch 15, slide 3

15.6

T~ N

It oo
| L Aoo 1C |U

rrla
11 1 Ul

fa
CIlLu

e The first level of integration testing for object-
oriented software

- Focus on interactions between classes

e Bottom-up integration according to “depends”
relation

- A depends on B: Build and test B, then A
e Start from use/include hierarchy

- Implementation-level parallel to logical “depends” relation
e Class A makes method calls on class B

e Class A objects include references to class B methods
s ST - but only if reference means “is part of”

(c) 2008 Mauro Pezze & Michal Young Ch 15, slide 15

fro
d

Account Customer Order Package
1 0..* 1 * 1 *
/\
* 1
| | * *
USAccount OtherAccount
CustomerCare Lineltem
JPAccount EUAccount UKAccount
Compositeltem Simpleltem
* *
*
I Model PriceList Component
* 1 _l* 0x1
Mﬂlulll--- Slot
*
1 1 1
ModelDB SlotDB ComponentDB

Y747Y7

CSvdb

h

>

+ N Vol ol e
axa LU QA 11ITI AI UL |
Customer Order Package
USAccount OtherAccount
CustomerCare PriceList Component
Model
JPAccount EUAccount UKAccount
ComponentDB
l
Slot
Note: we may have ModelDE SiotDB
to break loops and

SOFTWARE TESTING g e n e rate Stu bS

AND ANALYSIS

(c) 2008 Mauro Pezze & Michal Young Ch 15, slide 17

1+ | AAata flA
intraciass gata riow t

cE:

)
I A

e Exercise sequences of methods
- From setting or modifying a field value
- To using that field value

e \WWe need a control flow graph that encompasses
more than a single method ...

SOFTWARE TESTING
8 Rt

(c) 2008 Mauro Pezze & Michal Young Ch 15, slide 22

Thoa

Nntranla
11I1C (| |

It AauilA

Control flow for each method
+

(modelDB.getMode rmodeiily, thi

exit selectlicdel

Method

node for class
addComponent

+ | -

edges (X n ot ED

from node class to the start T o (s
nodes of the methods (" Component comp = new Componentorder,sku) e -

from the end nodes of the (eomconts - e

methods to node class \Me;tth

=> control flow through sequences
Of methOd CaIIS < legalConfig = false;

exit addCompoment

@oolean isLegalConfiguration() 71

True if (lisLegalConfig) (7.2)
alse

checkCongfiguration()
SOFTWARE TESTING

Bl class Model

: i ! i 6.7
|
(c) 2008 Mauro Pezze & Michal Young Ch 15/=sfide

simula - by thinking constantly about it

Mutation Testing

© Lionel Briand 2010

.research laboratory |

Example of Mutation Operators I

Constant replacement
Scalar variable replacement

Scalar variable for constant
replacement

Constant for scalar variable
replacement

Array reference for constant
replacement

Array reference for scalar
variable replacement

Constant for array reference
replacement

Scalar variable for array
reference replacement

Array reference for array
reference replacement

Source constant replacement
Data statement alteration

Comparable array name
replacement

Arithmetic operator replacement
Relational operator replacement
Logical connector replacement
Absolute value insertion

Unary operator insertion
Statement deletion

Return statement replacement

© Lionel Briand 2010

Regression Testing

AJjitha Rajan

Versionl > Version 2

Tests

Regression Tests for
the next version

Regression Test Optimization

>Re-test All
>»Regression Test Selection
>Regression Test Set Minimisation

>»Regression Test Set Prioritisation

Integration and Component-based
Software Testing

e (c) 2007 Mauro Pezzé & Michal Young Ch 21, slide 1

\A/hat 1c intanratinn o Nnr)
vviial 19O IIILCUIQLIUII LC I U.’
Module test Integration test System test
Specification: Module Interface specs, Requirements
interface module breakdown specification
Visible structure: Coding details Modular structure — none —
(software architecture)
Scaffolding Some Often extensive Some
required:
Looking for faults Modules Interactions, System
in: compatibility functionality

SOFTWARE TESTING
AND ANALYSIS

(c) 2007 Mauro Pezze & Michal Young Ch 21, slide 3

TArn Aramn
| UIJ UVuUVvVVI i
1
Top
— e
A stub B stub C
___________ Write stubs of called or
""""" - used modules at each
stub X stub Y

SOFTWARE TESTING
AND ANALYSIS

step in construction

(c) 2007 Mauro Pezze & Michal Young

Ch 21, slide 16

DAttArnm
DULLUIII
— _
Driver Driver
1 —
X Y

SOFTWARE TESTING
AND ANALYSIS

... but we must
construct drivers for
each module (as In
unit testing) ...

(c) 2007 Mauro Pezze & Michal Young

Ch 21, slide 20

System, Acceptance, and Regression
Testing

. — (c) 2007 Mauro Pezze & Michal Young Ch 22, slide 1

e Key characteristics:
- Comprehensive (the whole system, the whole spec)

- Based on specification of observable behavior

Verification against a requirements specification, not
validation, and not opinions

- Independent of design and implementation

Independence: Avoid repeating software design
errors in system test design

SOFTWARE TESTING
8 Rt

(c) 2007 Mauro Pezze & Michal Young Ch 22, slide 5

G3

“lAahAal Drannoa Nne
ivoval 11 IJ Co
e Some system properties are inherently global

- Performance, latency, reliability, ...

- Early and incremental testing is still necessary, but
provide only estimates

e A major focus of system testing

- The only opportunity to verify global properties
against actual system specifications

- Especially to find unanticipated effects, e.g., an
unexpected performance bottleneck

SOFTWARE TESTING
8 Rt

(c) 2007 Mauro Pezze & Michal Young Ch 22, slide 9

NnAant Drann Nne
UT |l.r P Co

epen
e Beyond system-global: Some properties depend
on the system context and use

- Example: Performance properties depend on
environment and configuration

- Example: Privacy depends both on system and how it
IS used

e Medical records system must protect against unauthorized
use, and authorization must be provided only as needed

- Example: Security depends on threat profiles
e And threats change!

e Testing Is just one part of the approach

SOFTWARE TESTING
AND ANALYSIS

(c) 2007 Mauro Pezze & Michal Young Ch 22, slide 10

N

2.3

>> Acceptance testing

SOFTWARE TESTING
it L

(c) 2007 Mauro Pezze & Michal Young Ch 22, slide 13

Esti ndability

Imatin g epen LY
e Measuring quality, not searching for faults
- Fundamentally different goal than systematic testing

e Quantitative dependability goals are statistical
- Reliability
- Availability
- Mean time to failure

e Requires valid statistical samples from
operational profile

- Fundamentally different from systematic testing

SOFTWARE TESTING
8 Rt

(c) 2007 Mauro Pezze & Michal Young Ch 22, slide 14

less detail

more detail

Requirements
Analysis

N\

V-model

is validated by
System | o ______
Design
Object |_____. Unit
Design Testing

N\

School of _ e

()
= Informatics

Acceptance
Testing

/

System
Testing

/

Coding

build system

> <

validate system

Ajitha Rajan

Testing in the Lifecycle

©2015-16

® School of
= iInformatics

eXtreme Programming (XP)
/”—_’—T i

ew User Story

w‘ime"ts Project Velocity Bugs
system 'fRe;D /rl_a:m\\ Customer

Arn::hitt::n::t:m'zl]wetanhﬂr Release g5, Tteration |Yersion,. Acceptance approval Small

) . — »
Spike * Planning a N Tests Releases
Uncertain (‘) Confident MNext Iteration

User Stories

Estimates Estimates

Splke Copvaght 2000), Doavan Wells

http://www.extremeprogramming.org/map/project.html

Ajitha Rajan Testing in the Lifecycle (©2015-16

http://www.extremeprogramming.org/map/project.html

HOW DOES TDD HELP

Think, talk

Refactor

TDD CYCLE

I Write Test Code

0
0
I
I

Guarantees that every functional code is testable
Provides a specification for the functional code
Helps to think about design

Ensure the functional code is tangible

01 Write Functional Code

I

0
0
0

Fulfill the requirement (test code)
Write the simplest solution that works
Leave Improvements for a later step

The code written is only designed to pass the test
0 no further (and therefore untested code is not created).

01 Refactor

e R s Y s Y s N s

Clean-up the code (test and functional)
Make sure the code expresses intent
Remove code smells

Re-think the design

Delete unnecessary code

Principle of TDD (In Practice) Start

Write a Test
See it fail =
because there’s Run th@
no dev code !
[Red J Write (just enough)

Dev Code to compile

See it fail
because no logic Run th@
Is implemented

Write (just enough)
Dev Code to pass

See the v
test pass Run th@

Refactoring

T

e
[GrTen] \—A>

Refactor

TDD

