
© Lionel Briand 2010
1

Software Verification and Validation

Prof. Lionel Briand
Ph.D., IEEE Fellow

© Lionel Briand 2010
2

Mutation Testing

© Lionel Briand 2010
3

Definitions

•  Fault-based Testing:
 directed towards “typical”
 faults that could occur in a
 program

•  Basic idea:
–  Take a program and test data

 generated for that program
–  Create a number of similar

 programs (mutants), each
 differing from the original in
 one small way, i.e., each
 possessing a fault

•  e.g., replace addition
 operator by
 multiplication operator

–  The original test data are
 then run through the mutants

–  If test data detect all
 differences in mutants, then
 the mutants are said to be
 dead, and the test set is
 adequate

© Lionel Briand 2010
4

Different types of Mutants

•  Stillborn mutants: Syntactically incorrect, killed by
 compiler, e.g., x = a ++ b

•  Trivial mutants: Killed by almost any test case
•  Equivalent mutant: Always acts in the same behavior as

 the original program, e.g., x = a + b and x = a – (-b)

•  None of the above are interesting from a mutation
 testing perspective

•  Those mutants are interesting which behave differently
 than the original program, and we do not have test cases
 to identify them (to cover those specific changes)

© Lionel Briand 2010
5

Example of an Equivalent mutant

Original program

A mutant

© Lionel Briand 2010
6

Basic Ideas (I)

In Mutation Testing:
1.  We take a program and a test suite generated for that

 program (using other test techniques)
2.  We create a number of similar programs (mutants), each

 differing from the original in one small way, i.e., each
 possessing a fault
–  E.g., replacing an addition operator by a multiplication

 operator
3.  The original test data are then run on the mutants
4.  If test cases detect differences in mutants, then the

 mutants are said to be dead (killed), and the test set is
 considered adequate

© Lionel Briand 2010
7

Basic Ideas (II)

•  A mutant remains live either
–  because it is equivalent to the original program

 (functionally identical although syntactically
 different – called an equivalent mutant) or,

–  the test set is inadequate to kill the mutant
•  In the latter case, the test data need to be augmented

 (by adding one or more new test cases) to kill the live
 mutant

•  For the automated generation of mutants, we use
 mutation operators, that is predefined program
 modification rules (i.e., corresponding to a fault model)

•  Example mutation operators next…

© Lionel Briand 2010
8

A Simple Example

Delta’s represent syntactic modifications. In fact, each of them
will be embedded in a different program version, a mutant.

© Lionel Briand 2010
9

•  Constant replacement
•  Scalar variable replacement
•  Scalar variable for constant

 replacement
•  Constant for scalar variable

 replacement
•  Array reference for constant

 replacement
•  Array reference for scalar

 variable replacement
•  Constant for array reference

 replacement
•  Scalar variable for array

 reference replacement
•  Array reference for array

 reference replacement

•  Source constant replacement
•  Data statement alteration
•  Comparable array name

 replacement
•  Arithmetic operator replacement
•  Relational operator replacement
•  Logical connector replacement
•  Absolute value insertion
•  Unary operator insertion
•  Statement deletion
•  Return statement replacement

© Lionel Briand 2010
10

Example of Mutation Operators II

Specific to object-oriented programming languages:
•  Replacing a type with a compatible subtype (inheritance)
•  Changing the access modifier of an attribute, a method
•  Changing the instance creation expression (inheritance)
•  Changing the order of parameters in the definition of a method
•  Changing the order of parameters in a call
•  Removing an overloading method
•  Reducing the number of parameters
•  Removing an overriding method
•  Removing a hiding Field
•  Adding a hiding field

© Lionel Briand 2010
11

Specifying Mutations Operators

•  Ideally, we would like the mutation operators to be
 representative of (and generate) all realistic types of
 faults that could occur in practice.

•  Mutation operators change with programming languages,
 design and specification paradigms, though there is
 much overlap.

•  In general, the number of mutation operators is large as
 they are supposed to capture all possible syntactic
 variations in a program.

•  Recent paper suggests random sampling of mutants can
 be used.

•  Some recent studies seem to suggest that mutants are
 good indicators of test effectiveness (Andrews et al,
 ICSE 2005).

© Lionel Briand 2010
12

Mutation Coverage

•  Complete coverage equals to killing all non-equivalent
 mutants (or random sample)

•  The amount of coverage is also called “mutation score”
•  We can see each mutant as a test requirement
•  The number of mutants depends on the definition of

 mutation operators and the syntax/structure of the
 software

•  Numbers of mutants tend to be large, even for small
 programs (hence random sampling)

© Lionel Briand 2010
13

A Simple Example (again)

Delta’s represent syntactic modifications. In fact, each of them
will be embedded in a different program version, a mutant.

© Lionel Briand 2010
14

Discussion of the Example

•  Mutant 3 is equivalent as, at this point, minVal and A have the
 same value

•  Mutant 1: In order to find an appropriate test case to kill it, we
 must
1.  Reach the fault seeded
during execution (Reachability)

•  Always true (i.e., we can
always reach the seeded fault)

1.  Cause the program state
 to be incorrect (Infection)

•  A <> B
3. Cause the program output

 and/or behavior to be
 Incorrect (Propagation)

•  (B<A) = false

© Lionel Briand 2010
15

Assumptions
•  What about more complex errors, involving several

 statements?
•  Let’s discuss two assumptions:

–  Competent programmer assumption: They write
 programs that are nearly correct

–  Coupling effect assumption: Test cases that
 distinguish all programs differing from a correct one
 by only simple errors is so sensitive that they also
 implicitly distinguish more complex errors

•  There is some empirical evidence of the above two
 hypotheses: Offutt, A.J., Investigations of the Software Testing
 Coupling Effect, ACM Transactions on Software Engineering and
 Methodology, vol. 1 (1), pp. 3-18, 1992.

© Lionel Briand 2010
16

Another Example

Specification:
•  The program should prompt the user for a positive

 integer in the range 1 to 20 and then for a string of that
 length.

•  The program then prompts for a character and returns
 the position in the string at which the character was
 first found or a message indicating that the character
 was not present in the string.

© Lionel Briand 2010
17

Code Chunk

…
found := FALSE;
i := 1;
while(not(found)) and (i <= x) do begin // x is the length
 if a[i] = c then
 found := TRUE
 else
 i := i + 1

end
if (found)
 print(“Character %c appears at position %i”);

else
 print(“Character is not present in the string”);

end
…

© Lionel Briand 2010
18

Mutation Testing Example: Test Set 1

Input Expected Output

(oracle)

x a[] c Response

25 The input integer
should be between 1

and 20

1 x x found Character x appears at
position 1

1 x a not found Character is not present
in the string

© Lionel Briand 2010
19

Mutation Testing Example: Mutant 1 (for Test Set 1)
•  Replace Found := FALSE; with Found := TRUE;
•  Re-run original test data set
•  Note: It is better in Mutation Testing to make only one small change

 at a time to avoid the danger of introduced faults with interfering
 effects (masking)

•  Failure: “character a appears at position 1” instead of saying
 “character is not present in the string”

•  Mutant 1 is killed (since Output <> Oracle)
…
found := FALSE; TRUE;
i := 1;
while(not(found)) and (i <= x) do begin

 if a[i] = c then
 found := TRUE
 else
 i := i + 1

end
if (found)

 print(“Character %c appears at position %i”);
else

 print(“Character is not present in the string”);
end
…

© Lionel Briand 2010
20

Mutation Testing Example: Mutant 2 (for Test Set 1)

•  Replace i:=1; with x:=1;

•  Will our original test data (test set 1) reveal the fault?
–  No, our original test data set fails to reveal the fault (because the x

 value was 1 in the second test case of test set 1)
•  As a result of the fault, only position 1 in string will be searched for.

 So what should we do?
•  In our test set, we need to increase our input string length and

 search for a character further along it
•  We modify the test set 1 and create a new test set 2 (next) so as

–  To preserve the effect of earlier tests
–  To make sure the live mutant (#2) is killed

Int i=1;
…
found := FALSE;
i := 1; x := 1;
while(not(found)) and (i <= x) do begin

 if a[i] = c then
 found := TRUE
 else
 i := i + 1

end
if (found)

 print(“Character %c appears at position %i”);
else

 print(“Character is not present in the string”);
end
…

© Lionel Briand 2010
21

Mutation Testing
 Example: Test

 Set 2

Input Expected
Output x a c Actual

output

Respon
se

25 Input Integer
between 1 and

20

1 x x found Character x
appears at
position 1

1 x a not
found

Character does
not occur in

string

3 xCv v Not
found

Character v
appears at
position 3

(this test case will kill
the mutant in the
previous slide)

© Lionel Briand 2010
22

Mutation Testing Example: Mutant 3 (for Test Set 2)

•  i := i + 1; is replaced with i:= i +2;
•  Again, our test data (test set 2) fails to kill the mutant
•  We must augment the test set 2 and create a new test set 3 (next)

 to search for a character in the middle of the string
•  With the new test set, mutant 3 can be killed
•  Many other changes could be made on this short piece of code, e.g.,

 changing array reference, changing the <= relational operator
…
found := FALSE;
i := 1;
while(not(found)) and (i <= x) do begin

 if a[i] = c then
 found := TRUE
 else
 i := i + 1 2

end
if (found)

 print(“Character %c appears at position %i”);
else

 print(“Character is not present in the string”);
end
…

© Lionel Briand 2010
23

Mutation Testing Example: Test Set 3

Input Expected Output

x a c Response

25 Input Integer between 1
and 20

1 x x found Character x appears at
position 1

1 x a not found Character does not occur
in string

3 xCv v Found Character v appears at
position 3

3 xCv C Not found Character C appears at
position 2

(this test case will kill the
mutant in the previous

slide)

© Lionel Briand 2010
24 Jeff Offutt, A Practical System for Mutation Testing: Help for the Common Programmer, 1994

Run Mutants and
measure mutation

score

© Lionel Briand 2010
25

Mutation Testing: Discussion

•  It measures the quality of test cases
•  A tool’s slogan: “Jester - the JUnit test tester”.
•  It provides the tester with a clear target (mutants to kill)
•  Mutation testing can also show that certain kinds of faults are

 unlikely (those specified by the fault model), since the
 corresponding test case will not fail

•  It does force the programmer to inspect the code and think of the
 test data that will expose certain kinds of faults

•  It is computationally intensive, a possibly very large number of
 mutants is generated: random sampling, selective mutation
 operators (Offutt)

•  Equivalent mutants are a practical problem: It is in general an
 undecidable problem

•  Probably most useful at unit testing level

© Lionel Briand 2010
26

Mutation Testing: Other Applications

•  Mutation operators and systems are also very useful for
 assessing the effectiveness of test strategies – they
 have been used in a number of case studies
–  Define a set of realistic mutation operators
–  Generate mutants (automatically)
–  Generate test cases according to alternative strategies
–  Assess the mutation score (percentage of mutants killed)

•  In our discussion, we saw mutation operators for source code
 (body)

•  There are also works on
–  Mutation operators for module interfaces (aimed at integration

 testing)
–  Mutation operators on specifications: Petri-nets, state machines,

 … (aimed at system testing)

© Lionel Briand 2010
27

Mutation Testing Tools and Some Key Pointers
•  Tools

–  MuClipse: perhaps the
best tool out there…

–  Jester: A Mutation Testing tool in Java (Open Source)
–  Pester: A Mutation Testing tool in Python (Open Source)
–  Nester: A Mutation Testing tool in C# (Open Source)
–  http://www.parasoft.com/jsp/products/article.jsp?articleId=291

•  Pointers:
–  http://en.wikipedia.org/wiki/Mutation_testing
–  http://www.mutationtest.net/
–  http://www.dcs.kcl.ac.uk/pg/jiayue/repository/

