
Software Testing: Overview

Stuart Anderson

Stuart Anderson Software Testing: Overview c©2014

1

Course Administration: Books

• Main text: Pezzè & Young, Software Testing and Analysis: Process,
Principles and Techniques, Wiley, 2007.

• Paul Ammann and Jeff Offutt, Introduction to Software Testing, Cambridge
University Press, Cambridge, UK, ISBN 0-52188-038-1, 2008.

• G.J. Myers, The Art of Software Testing, Second Edition, John Wiley & Sons,
New York, 1976.

• B. Marick, The Craft of Software Testing, Prentice Hall, 1995
• C Kaner, J. Bach, B. Pettichord, Lessons Learned in Software Testing, Wiley,

2001.

Material covered via readings, presentations, web resources and practical
experience.

Stuart Anderson Software Testing: Overview c©2014

2

Course Administration

• Course Web page: http://www.inf.ed.ac.uk/teaching/courses/st/

• Useful: http://www.cs.uoregon.edu/~michal/book/index.html

• Useful: http://www.testingeducation.org

• Alternate: http://www.youtube.com/watch?v=ILkT_HV9DVU Open Lecture
by James Bach on Software Testing - where he takes a different perspective
on the task.

• Useful Context: http://www.computer.org/web/swebok see the Testing
section of the Software Engineering Body of Knowledge

Stuart Anderson Software Testing: Overview c©2014

http://www.inf.ed.ac.uk/teaching/courses/st/
http://www.cs.uoregon.edu/~michal/book/index.html
http://www.testingeducation.org
http://www.youtube.com/watch?v=ILkT_HV9DVU
http://www.computer.org/web/swebok

3

Course Assessment

• One practical worth 25% of the final mark — Practical will involve testing
a system and producing a group report (group size - 4 or 5).

• Issued: week ending 16 January. Deadline Monday 16 March at 1600.
Feedback on draft submissions submitted by 1600 on Monday 23 February.

• In week 9 each group will organise a 30 minute feedback session to demonstrate
their practical and get further feedback.

• One examination worth 75%. This will be an open-book examination.

• Quizzes and tutorials — not assessed but doing them will make it much
easier to do the examination and practicals

Stuart Anderson Software Testing: Overview c©2014

4

Tutorials

• There are four tutorials available on the course. Each one is owned by a
different tutor.

• Each tutorial relates to a different section of the practical.

• To access the tutorial you must have evidence of preparation for the tutorial
(e.g. your group has completed a small test or has some documentation
available).

• When you are ready to do a tutorial you contact the tutor to arrange a time
for a tutorial session.

• Each tutorial session will have two groups participating.

Stuart Anderson Software Testing: Overview c©2014

5

Famous quote time!
“...testing can be a very effective way to show the presence of bugs, but is
hopelessly inadequate for showing their absence. The only effective way to
raise the confidence level of a program significantly is to give a convincing
proof of its correctness.”

– Edsger Dijkstra

http://www.cs.utexas.edu/users/EWD/transcriptions/EWD03xx/EWD340.html

Stuart Anderson Software Testing: Overview c©2014

http://www.cs.utexas.edu/users/EWD/transcriptions/EWD03xx/EWD340.html

6

But often the bug is in the Specification

• First launch of Ariane 5.
• Same avionics as Ariane 4.
• Achieves a much higher horizontal

velocity in first minute.
• 16 bit number for the velocity

overflows . . .

Stuart Anderson Software Testing: Overview c©2014

7

So really, why do we test?

• To find faults
– Glenford Myers, The Art of Software Testing

• To provide confidence
– of reliability
– of (probable) correctness
– of detection (therefore absence) of particular faults

• Other issues include:
– Performance of systems (i.e. use of resources like time, space,

bandwidth,...).
– “...ilities” can be the subject of test e.g. usability, learnability, reliability,

availability,
• Kaner and Bach: a technical investigation carried out to expose quality-related

information on the product under test.

Stuart Anderson Software Testing: Overview c©2014

8

Testing Theory

• But Dijkstra viewed programs as primarily abstract mathematical objects —
for the tester they are engineered artifacts — the mathematics informs the
engineering — but that is not the whole story (e.g., integers – a common trap
for the unwary).

• Plenty of negative results
– Nothing guarantees correctness
– Statistical confidence is prohibitively expensive
– Being systematic may not improve fault detection — as compared to simple

random testing
– Rates of fault detection don’t correlate easily with measures of system

reliability.
• Most problems to do with the “correctness” of programs are formally

undecidable (e.g., program equivalence).

Stuart Anderson Software Testing: Overview c©2014

9

What Do We Have Available?

• Specifications (formal or informal)
– To check an output is correct for given inputs
– for Selection, Generation, Adequacy of test sets

• Designs/Architecture
– Useful source of abstractions
– We can design for testability
– Architectures often strive to separate concerns

• Code
– for Selection, Generation, Adequacy
– Code is not always available
– Focus on fault/defect finding can waste effort

• Usage (historical or models) — e.g., in telecom traffic
• Organisation experience — Processes + process data

Stuart Anderson Software Testing: Overview c©2014

10

Testing for Reliability

• Reliability is statistical, and requires a statistically valid sampling scheme

• Programs are complex human artifacts with few useful statistical properties

• In some cases the environment (usage) of the program has useful statistical
properties

– Usage profiles can be obtained for relatively stable, pre-existing systems
(telephones), or systems with thoroughly modelled environments (avionics)

Stuart Anderson Software Testing: Overview c©2014

11

A Hard Case: Certifying Ultra-High Reliability

• Some systems are required to demonstrate very high reliability (e.g., an aircraft
should only fail completely once in 1011 hours of flying).

• So aircraft components have to be pretty reliable (but think about how many
single points of failure a car has).

• How can we show that the avionics in a fly-by-wire aircraft will only fail once
in 109 hours of flying.

• Butler & Finelli estimate
for 10−9 per 10 hour mission
requires: 1010 hours testing with 1 computer
or: 106 hours (114 years) testing with 10,000 computers
[also Littlewood and Strigini]

Stuart Anderson Software Testing: Overview c©2014

12

Standard Testing Activities

Modelling the environment of the software • What is the right abstraction
for the interface?

Selecting test scenarios • How shall we select test cases?
– Selection; Generation

Running and evaluating test scenarios • Did this test execution succeed or
fail?
– Oracles

• What do we know when we have finished?
– Assessment

Measuring testing progress/quality • How do we know when we have tested
enough?
– Adequacy

• identifying issues in the process

Stuart Anderson Software Testing: Overview c©2014

13

Modelling the Environment

• Testers identify and simulate interfaces that a software system uses

• Common interfaces include: Human interfaces, Software interfaces (aka
APIs), File system interfaces, Communication interfaces

• Identify interactions that are beyond the control of the system, e.g.:

– Hardware being powered off and on unexpectedly
– Files being corrupted by other systems/users
– Contention between users/systems

• Issues in building abstractions include: choosing representative values,
combinations of inputs, sequence (finite state machine models are often used)

Stuart Anderson Software Testing: Overview c©2014

14

Modelling: Partition the Input Space
Basic idea: Divide program input space into (what we think might be) classes
that require similar behaviour.

• Use representatives of the “similarity classes” to model the domain
• Worry that our partitions might not correspond to regions that require

essentially the same behaviour.

Stuart Anderson Software Testing: Overview c©2014

15

Modelling: Specification-Based Partition Testing

• Divide the program input space according to cases in the specification
– May emphasise boundary cases
– Combining domains can create a very large number of potential cases
– Abstractions can lose dependencies between inputs

• Testing could be based on systematically “covering” the categories
– The space is very large and we probably still need to select a subset.
– May be driven by scripting tools or input generators
– Example: Category-Partition testing [Ostrand]

• Many systems do not have particularly good specifications.
• Some development approaches use tests as a means of specification.

Stuart Anderson Software Testing: Overview c©2014

16

Quiz: Testing Triangles (G. Myers)

• You are asked to test a method Triangle.scalene(int, int, int) that returns a
Boolean value.

• Triangle.scalene(p, q, r) is true when p, q and r are the lengths of the sides
of a scalene triangle.

• Scalene as opposed to equilateral or isosceles

• Construct an adequate test set for such a method.

Stuart Anderson Software Testing: Overview c©2014

17

Quiz: Does having the code help?
public class Triangle {

public boolean scalene(int p, int q, int r) {

int tmp;

if(q>p) { tmp = p; p = q; q = tmp; }

if(r>p) { tmp = p; p = r; r = tmp; }

return ((r>0) && (q>0) && (p>0) &&

(p<(q+r))&& ((q>r) || (r>q)));

}

}

Note: this code contains at least one bug!

Stuart Anderson Software Testing: Overview c©2014

18

Quiz: Summary

• The code is less than 10 lines long – we seem to need at least the same number
of tests to check it.

• Many modern systems are multi-million line systems.

• Daunting task to work out how to test such systems.

• Part of the approach is to change the way systems are built.

Stuart Anderson Software Testing: Overview c©2014

19

Selecting: Selecting Tests
What criteria can we use to cut down the number of tests?

• Common criteria are coverage criteria: We have executed all statements;
We have executed all branches; We have executed all possible paths in the
program; We have covered all possible data flows.

• We might also try to evaluate the effectiveness of test cases by seeding errors
in the code and seeing how well a test set does in finding the errors.

• We might also consider statistical measures, e.g., that we have a statistically
valid sample of the possible inputs (but here we need a good idea of the
distribution of inputs).

Stuart Anderson Software Testing: Overview c©2014

20

Selecting: Test Adequacy

• Ideally: adequate testing ensures some property (proof by cases)

– It is very hard to establish non-trivial properties using these methods (unless
the system is clearly finite)

– Origins in [Goodenough and Gerhart], [Weyuker and Ostrand]

• Practically: “adequacy” criteria are safety measures designed to identify holes
in the test set

– If we have not done this kind of test some instances of this kind of test
should be added to the test set.

Stuart Anderson Software Testing: Overview c©2014

21

Selecting: Systematic Testing

• Systematic (non-random) testing is aimed at program improvement

– Finding faults not trying to predict the statistical behaviour of the program
– Obtaining valid samples and maximising fault detection require different

approaches; it is unlikely that one kind of testing will be satisfactory for
both

• “Adequacy” criteria mostly negative: indications of important omissions

– Positive criteria (assurance) are no easier than program proofs

Stuart Anderson Software Testing: Overview c©2014

22

Selecting: Structural Coverage Testing

• (In)adequacy criteria

– If significant parts of program structure are not tested, testing is surely
inadequate

• Control flow coverage criteria

– Statement (node, basic block) coverage
– Branch (edge) and condition coverage
– Data flow (syntactic dependency) coverage
– Various control-flow criteria

• Attempted compromise between the impossible and the inadequate

Stuart Anderson Software Testing: Overview c©2014

23

Selecting: Fault-Based Testing

• Given a fault model

– hypothesised set of deviations from correct program
– typically, simple syntactic mutations; relies on coupling of simple faults with

complex faults

• Coverage criterion: Test set should be adequate to reveal (all, or x%) faults
generated by the model

– similar to hardware test coverage

Stuart Anderson Software Testing: Overview c©2014

24

Selecting: Fault Models

• Fault models are key to semiconductor testing

– Test vectors graded by coverage of accepted model of faults (e.g., “stuck-at”
faults)

• What are fault models for software?

– What would a fault model look like?
– How general would it be? Across application domains? Across organisations?

Across time?

• Defect tracking is a start — gathering collections of common faults in an
organisation — rigorous process — links to CMMI (Capability Maturity Model
Integration) and optimising organisations.

Stuart Anderson Software Testing: Overview c©2014

25

Selecting: Test Selection — Standard Advice

• Specification coverage is good for selection as well as adequacy

– applicable to informal as well as formal specs

• Fault-based tests

– usually ad hoc, sometimes from check-lists

• Program coverage last

– to suggest uncovered cases, not just to achieve a coverage criterion

Stuart Anderson Software Testing: Overview c©2014

26

Selecting: The Bottom Line — The Budget
Coverage Criterion

• A common answer to ‘When is testing finished?’
– When the money is used up
– When the deadline is reached

• This is sometimes a rational approach!
– Implication 1: Test selection is more important than stopping criteria per

se.
– Implication 2: Practical comparison of approaches must consider the cost

of test case selection
• Example: testing of SAFEBUS (communications bus for Boeing aircraft) —

started out with a pile of money and stopped when they ran out (could have
more money if it was still flakey).

Stuart Anderson Software Testing: Overview c©2014

27

Running: Running and Evaluating Tests

• The magnitude of the task is a problem than can require tools to help —
automated testing means we can do more testing but in some circumstances
it is hard (e.g. GUIs).

• Is the answer right? Usually called the Oracle problem — often the oracle is
human.

• Two approaches to improving evaluation: better specification to help structure
testing; embedded code to evaluate structural aspects of testing (e.g. providing
additional interfaces to normally hidden structure).

• Through life testing: most programs change (some are required not to change
by law) — regression testing is a way of ensuring the next version is a least as
good as the previous one.

• Reproducing errors is difficult — attempt to record sequence of events and
replay — issues about replicating the environment.

Stuart Anderson Software Testing: Overview c©2014

28

Running: The Importance of Oracles

• Much testing research has concentrated on adequacy, and ignored oracles

• Much testing practice has relied on the “eyeball oracle”

– Expensive, especially for regression testing — makes large numbers of tests
unfeasible

– Not dependable

• Automated oracles are essential to cost-effective testing

Stuart Anderson Software Testing: Overview c©2014

29

Running: Sources of Oracles

• Specifications

– sufficiently formal (e.g., SCR tables)
– but possibly incomplete (e.g., assertions in embedded assertion languages

such as Anna, ADL, APP, Nana)

• Design, models

– treated as specifications, as in protocol conformance testing

• Prior runs (capture/replay)

– especially important for regression testing and GUIs; hard problem is
parameterization

Stuart Anderson Software Testing: Overview c©2014

30

Running: What can be automated?

• Oracles

– assertions; replay; from some specifications

• Selection (Generation)

– scripting; specification-driven; replay variations
– selective regression test

• Coverage

– statement, branch, dependence

• Management

Stuart Anderson Software Testing: Overview c©2014

31

Running: Design for Test — Three Principles

1. Observability

• Providing the right interfaces to observe the behavior of an individual unit
or subsystem

2. Controllability

• Providing interfaces to force behaviours of interest

3. Partitioning

• Separating control and observation of one component from details of others

Stuart Anderson Software Testing: Overview c©2014

32

Measuring: Measuring Progress (Are we done
yet?)

• Structural:
– Have I tested for common programming errors?
– Have I exercised all of the source code?
– Have I forced all the internal data to be initialised and used?
– Have I found all seeded errors?

• Functional:
– Have I thought through the ways in which the software can fail and selected

tests that show it doesnt?
– Have I applied all the inputs?
– Have I completely explored the state space of the software?
– Have I run all the scenarios that I expect a user to execute?

Stuart Anderson Software Testing: Overview c©2014

33

Summary

• We have outlined the main testing activities:

– Modelling the environment
– Test Selection
– Test execution and assessment
– Measuring progress

• These are features of all testing activity.

• Different application areas require different approaches

• Different development processes might reorganise the way we put effort into
test but the amount of test remains fairly constant for a required level of
product quality.

Stuart Anderson Software Testing: Overview c©2014

34

Readings
Required Readings

• Textbook (Pezzè and Young): Chapter 1, Software Test and Analysis in a
Nutshell

• Textbook (Pezzè and Young): Chapter 2, A Framework for Test and
Analysis

• Whittaker, J.A., What is software testing? And why is it so hard?, IEEE
Software, vol.17, no.1, pp.70-79, Jan/Feb 2000.

DOI: http://dx.doi.org/10.1109/52.819971

Stuart Anderson Software Testing: Overview c©2014

http://dx.doi.org/10.1109/52.819971

