
Mutation Testing

Stuart Anderson

Stuart Anderson Mutation Testing c©2011-14

1

Overview
Mutation testing is a structural testing method, i.e. we use the structure of
the code to guide the test process.

We cover the following aspects of Mutation Testing:

• What is a mutation?

• What is mutation testing?

• When should we use mutation testing?

• Mutations

• Examples

• Mutation testing tools

Stuart Anderson Mutation Testing c©2011-14

2

What is a mutation?

• A mutation is a small change in a program.

• Such small changes are intended to model low level defects that arise in the
process of coding systems.

• Ideally mutations should model low-level defect creation.

Stuart Anderson Mutation Testing c©2011-14

3

What is Mutation Testing?

• Mutation testing is a structural testing method aimed at assessing/improving
the adequacy of test suites, and estimating the number of faults present in
systems under test.
• The process, given program P and test suite T , is as follows:

– We systematically apply mutations to the program P to obtain a sequence
P1, P2,... Pn of mutants of P . Each mutant is derived by applying a single
mutation operation to P .

– We run the test suite T on each of the mutants, T is said to kill mutant Pj

if it detects an error.
– If we kill k out of n mutants the adequacy of T is measured by the quotient

k/n. T is mutation adequate if k = n.
• One of the benefits of the approach is that it can be almost completely

automated.

Stuart Anderson Mutation Testing c©2011-14

4

When should we use mutation testing?

• Structural test suites are directed at identifying defects in the code. One
goal of mutation testing is to assess or improve the efficacy of test suites in
discovering defects.

• When we are carrying out structural testing we are worried about defects
remaining in the code. Often we are keen to measure the Residual Defect
Density (RDD) in the program P under test.

• The Residual Defect Density is usually measured in defects per thousand lines
of code.

• Advocates of mutation testing argue that it can provide us with an estimate
of the RDD of a program P that has satisfied all the tests in a test suite T.

Stuart Anderson Mutation Testing c©2011-14

5

Using Mutation Testing to Estimate the RDD
We want to estimate the RDD of Program P given that it has satisfied all the
tests in test suite T . We follow the procedure:

• Suppose we have an estimate r of the RDD of programs produced by our
development process before they are subject to test (this could be gathered
using production data and field experience, or it could be based on the number
of faults our tests have already detected).
• Generate n mutants of the program P .
• Test each mutant with the test suite T .
• Find the number, k, of mutants that are killed by T . To yield a non-zero RDD

we need to test enough mutants to ensure that 0 < k < n.
• Use r. (n− k)/k as the estimate for the RDD of the tested program.
• k/n is a measure of the adequacy of T in finding defects in P .

Stuart Anderson Mutation Testing c©2011-14

Slide 5: Using Mutation Testing to Estimate the RDD

Alternative non-RDD-based approach in P&Y, p.322.

6

Assumptions
The validity of this rests on many assumptions:

• That mutations are a good model for defects.

• That defects are usually independent

• That the construction of T is not influenced by knowledge of the mutation
process (i.e. we do not use knowledge of the mutation process to build tests
that are better at finding defects generated by mutations than normal defects).

• If we are interested in making confident estimates of very low RDDs we will
need very large numbers of mutants.

• For example, if our development process left us with 10 defects per kLoc before
test and we want to be confident our RDD after test is lower that 0.1 per kLoC
then we need to test many mutants to be confident of such an RDD estimate.

Stuart Anderson Mutation Testing c©2011-14

7

An Approach to Mutation

• Ideally we need systematically to apply mutations to the program under test.
This would involve some criterion of applicability.

• Usually we consider mutation operators in the form of rules that match a
context and create some systematic mutation of the context to create a
mutant.

• The simple approach to coverage is to consider all possible mutants but this
may create a very large number of mutants (in the case of estimating RDDs
the value and confidence required of the estimated RDD would control the
number of mutants to be generated).

• Mutation testing is best supported by tools because of the potentially very
large numbers of mutations to be generated during testing.

Stuart Anderson Mutation Testing c©2011-14

8

Kinds of Mutation

• Value Mutations: these mutations involve changing the values of constants
or parameters (by adding or subtracting values etc), e.g. loop bounds – being
one out on the start or finish is a very common error.

• Decision Mutations: this involves modifying conditions to reflect potential
slips and errors in the coding of conditions in programs, e.g. a typical mutation
might be replacing a > by a < in a comparison.

• Statement Mutations: these might involve deleting certain lines to reflect
omissions in coding or swapping the order of lines of code. There are other
operations, e.g. changing operations in arithmetic expressions. A typical
omission might be to omit the increment on some variable in a while loop.

A wide range of mutation operators is possible...

Stuart Anderson Mutation Testing c©2011-14

9

Offutt’s Mutations for Inter-Class Testing

Stuart Anderson Mutation Testing c©2011-14

10

Value Mutation

• Here we attempt to change values to reflect errors in reasoning about programs.

• Typical examples are:

– Changing values to one larger or smaller (or similar for real numbers).
– Swapping values in initialisations.

• The commonest approach is to change constants by one in an attempt to
generate a one-off error (particularly common in accessing arrays).

• Coverage criterion: Here we might want to perturb all constants in the program
or unit at least once or twice.

Stuart Anderson Mutation Testing c©2011-14

Example 11

Value Mutation

Stuart Anderson Mutation Testing c©2011-14

12

Decision Mutation

• Here again we design the mutations to model failures in reasoning about
conditions in programs. As before this is a very limited model of programming
error really modelling slips in coding rather than a design error.
• Typical examples are:

– Modelling “one-off” errors by changing < to <= or vice versa (this is
common in checking loop bounds).

– Modelling confusion about larger and smaller, so changing > to < or vice
versa.

– Getting parenthesisation wrong in logical expressions e.g. mistaking
precedence between && and ||

• Coverage Criterion: We might consider one mutation for each condition in
the program. Alternatively we might consider mutating all relational operators
(and logical operators e.g. replacing || by && and vice versa)

Stuart Anderson Mutation Testing c©2011-14

Example 13

Decision Mutation

Stuart Anderson Mutation Testing c©2011-14

14

Statement Mutation

• Here the goal is primarily to model editing slips at the line level – these typically
arise when the developer is cutting and pasting code. The result is usually
omitted or duplicated code. In general we might consider arbitrary deletions
and permutations of the code.

• Typical examples include:
– Deleting a line of code
– Duplicating a line of code
– Permuting the order of statements.

• Coverage Criterion: We might consider applying this procedure to each
statement in the program (or all blocks of code up to and including a given
small number of lines).

Stuart Anderson Mutation Testing c©2011-14

Example 15

Statement Mutation

Stuart Anderson Mutation Testing c©2011-14

16

Observations

• Mutations model low level errors in the mechanical production process.
Modelling design errors is much harder because they involve large numbers of
coordinated changes throughout the program.

• Ensuring test sets satisfy coverage criteria are often enough to ensure they kill
mutants (because mutants often do not “make sense” and so provoke a failure
if they are ever executed).

• Black-box test sets are poorer at killing mutants – we’d expect this because
black-box tests are driven more by the operational profile than by the need to
cover statements.

• We could see mutation testing as a way of forcing more diversity on the
development of test sets if we use a black-box approach as our primary test
development approach.

Stuart Anderson Mutation Testing c©2011-14

17

Concepts from the literature

• Syntactic vs semantic size of a mutant – the size the source change a
mutant involves, versus the size of its effect on program behaviour. It has been
hypothesised that mutation operators which produce semantically small faults
are better (because semantically large faults will be caught by most tests).
Justification for elimination of certain types of mutation.

• Competent programmer hypothesis – the program under test is “close to”
the correct program. So exploring the space of small mutations will lead us to
that program.

• Coupling effect hypothesis — tests for detecting simpler faults will be
sufficient also for detecting more complex faults. So even though many faults
are a product of logical errors with wide consequences in the code, small
mutants will lead to recognition of these faults.

Stuart Anderson Mutation Testing c©2011-14

18

Mutation Testing Tools

• There is a range of possible mutation tools. Recently Offutt and others have
created MuJava, a tool for creating Java mutants.

MuJava: An Automated Class Mutation System, Yu-Seung Ma, Jeff Offutt
and Yong-Rae Kwon. Journal of Software Testing, Verification and Reliability,
15(2):97-133, June 2005. http://dx.doi.org/10.1002/stvr.v15:2

• Their system is designed specifically to include a range of mutation operators
that target OO languages in particular.

• They incorporate an efficient version of generating a “metamutant” that is
capable of behaving like all mutants of the program (using Java reflection to
instantiate operators at execution time).

Stuart Anderson Mutation Testing c©2011-14

http://dx.doi.org/10.1002/stvr.v15:2

MuJava 19

Mutant Generation Interface

Stuart Anderson Mutation Testing c©2011-14

MuJava 20

Mutant Analysis Interface

Stuart Anderson Mutation Testing c©2011-14

MuJava 21

Test Execution Interface

Stuart Anderson Mutation Testing c©2011-14

22

Summary

• Mutation testing can be a useful addition to the test process.

• It is laborious and really requires tool assistance if it is to be cost-effective.

• Improving Residual Defect Density estimates requires very large numbers of
mutants if we are to have confidence in the results.

• Object Orientation has a wide range of structural and operational mutants
that are specific to objects.

• Tools like mu-Java use features of Java to enable the efficient generation and
test of mutants.

• Even with efficient techniques execution times can be very slow for large
numbers of mutants.

Stuart Anderson Mutation Testing c©2011-14

23

Required Readings

• Textbook (Pezzè and Young): Chapter 16, Fault-Based Testing

• MuJava: An Automated Class Mutation System, Yu-Seung Ma, Jeff Offutt
and Yong-Rae Kwon. Journal of Software Testing, Verification and Reliability,
15(2):97-133, June 2005. http://dx.doi.org/10.1002/stvr.v15:2

• A. Jefferson Offutt, Ammei Lee, Gregg Rothermel, Roland H. Untch, and
Christian Zapf. 1996. An experimental determination of sufficient mutant
operators. ACM Trans. Softw. Eng. Methodol. 5, 2 (April 1996), 99-118.
http://dx.doi.org/10.1145/227607.227610

Stuart Anderson Mutation Testing c©2011-14

http://dx.doi.org/10.1002/stvr.v15:2
http://dx.doi.org/10.1145/227607.227610

