
Structural Testing

Stuart Anderson

Stuart Anderson Structural Testing c©2011-14

1

Types of Testing
When we write unit tests we consider:

1. Specification-based tests using specifications or models
2. Checklists of commonly occurring errors
3. Structural Testing

• These are two different kinds of test: where we consider details of the
implementation (as in 2 and 3) – known as white box testing – and where
we work from external descriptions, treating the implementation as an opaque
artefact with inputs and outputs: black box testing (as in 1).

• We also distinguish between tests which involve executing the code (dynamic
tests, which we have mainly been looking at) and those which do not: static
tests (code review, for example).

Stuart Anderson Structural Testing c©2011-14

2

Common Errors

• Can be from a particular programming community.

• Well-instrumented organisations monitor and summarise error occurrences.

• Professional good practice should make you sensitive to the errors you make
personally.

• The following are the “top three” from David Reilly’s top ten Java programming
errors

– Concurrent access to shared variables by threads (3)
– Capitalization errors (2)
– Null pointers (1)

Stuart Anderson Structural Testing c©2011-14

1/2 3

Concurrent access to shared variables by threads
public class MyCounter {

private int count = 0; // count starts at zero

public void incCount(int amount) {

count = count + amount;

}

public int getCount() {

return count;

}

}

...

MyCounter c;

// Thread 1 // Thread 2

c.incCount(1); c.incCount(1);

// join

c.getCount() == ?

Stuart Anderson Structural Testing c©2011-14

2/2 4

Concurrent access to shared variables by threads
public class MyCounter {

private int count = 0; // count starts at zero

public synchronized void incCount(int amount) {

count = count + amount;

}

public int getCount() {

return count;

}

}

Synchronization... Even more important with shared external resources...

Stuart Anderson Structural Testing c©2011-14

5

Capitalization Errors
Remember:

• All methods and member variables in the Java API begin with lowercase letters.

• All methods and member variables use capitalization where a new word begins
— e.g. getDoubleValue().

Stuart Anderson Structural Testing c©2011-14

6

Null pointers
public static void main(String args[]) {

String[] list = new String[3]; // Accept up to 3 parameters

int index = 0;

while((index < args.length) && (index < 3)) {

list[index] = args[index];

index++;

}

// Check all the parameters

for(int i = 0; i < list.length; i++) {

if(list[i].equals("-help")) {

//

} else if(list[i].equals("-cp")) {

//

}

// [else]

}

}

Stuart Anderson Structural Testing c©2011-14

7

Structural Testing

• Testing that is based on the structure of the program.

• Usually better for finding defects than for exploring the behaviour of the
system.

• Fundamental idea is that of basic block and flow graph – most work is
defined in those terms.

Two main approaches:

– Control oriented: how much of the control aspect of the code has been
explored?

– Data oriented: how much of the definition/use relationship between data
elements has been explored.

Stuart Anderson Structural Testing c©2011-14

8

Basic Blocks

• A basic block has at most one entry point and usually at most two exit points.

Can you think of exceptions to this?

• We decompose our program into basic blocks. These are the nodes of the
control graph.

• The edges of the control graph indicate control flow — possibly under some
conditions.

Stuart Anderson Structural Testing c©2011-14

9

Code and Control Flow Graph Example

[P&Y p.213-214, Figures 12.1 & 12.2]

Stuart Anderson Structural Testing c©2011-14

10

Some tests for the cgi program

• T0 = { “ ”, “test”, “test+case%1Dadequacy” }
→ “ ”, “test”, “testcase2adequacy”

• T1 = { “adequate+test%0Dexecution%7U” }
→ “adequate test<CR>execution2”

• T2 = { “%3D”, “%A”, “a+b”, “test” }
→ “=”, ?, “a b”, “test”

• T3 = { “ ”, “+%0D+%4J” }
→ “ ”, “<CR> 2”

• T4 = { “first+test%9Ktest%K9” }
→ “first test2test2”

Stuart Anderson Structural Testing c©2011-14

11

Statement Testing

• Statement Adequacy: all statements have been executed by at least one
test.
• Statement Coverage: for a particular test T, this is the quotient of the

number of statements executed during a run of T (not counting repeats) and
the number of statements in the program.
• The test set T is adequate if the Statement Coverage is 1.
• For our sample tests: T0 omits ok = 1 at line 34, T1 executes all the code as

does T2.
• In general we do not know if statement coverage is achievable – why?
• All of this can be rephrased in terms of basic blocks – and we look at node

coverage in the control-flow graph.
• Statement coverage is a basic measure but is a fairly poor test of how well we

have exercised the code.

Stuart Anderson Structural Testing c©2011-14

Example 12

Statement Coverage

Stuart Anderson Structural Testing c©2011-14

13

Branch Coverage

• Statement Coverage gives fairly poor coverage of the flow of control in systems.

• For example, we can only guarantee to consider arriving at some basic block
from one of its predecessors.

• Branch adequacy attempts to resolve that:
Let T be a test suite for a program P. T satisfies the branch adequacy criterion
if for each branch B of P there exists at least one test case that exercises B.

• The branch coverage for a test suite is the ratio of branches tested by the
suite and the number of branches in the program under test.

• As usual it is undecidable whether there exists a test suite satisfying the branch
adequacy criterion.

Stuart Anderson Structural Testing c©2011-14

Example 14

Branch Coverage

Stuart Anderson Structural Testing c©2011-14

15

Condition Coverage

• There are issues concerning the adequacy of branch coverage in environments
where we allow compound conditions (because we might take a particular
branch for different reasons).
• This is exacerbated when we have ‘shortcut conditions’ that do not evaluate

some of the condition code.
• We frame this in terms of ‘basic conditions’ i.e. comparisons, basic properties

etc.
• The basic condition adequacy criterion is:

Let T be a test suite for program P. T covers all the basic conditions of P iff
each basic condition of P evaluates to true under some test in T and evaluates
to false under some test in T.
• Possible to extend to a ‘compound’ condition adequacy where all boolean

subformulae in conditions evaluate to both true and false.

Stuart Anderson Structural Testing c©2011-14

Example 16

Condition Coverage

Stuart Anderson Structural Testing c©2011-14

17

Compound Condition Coverage
a && b && c && d && e (((a ‖ b) && c) ‖ d) && e [P&Y p.221]

Finally, Modified Condition(MC)/Decision Coverage(DC), aka Modified
Condition Adequacy Criterion:

• Satisfiable with N + 1 test cases (N variables).
• Good compromise, required in aviation quality standards.

Stuart Anderson Structural Testing c©2011-14

18

Path Coverage

• Condition coverage still gives us a poor coverage of historical executions of the
system.

• Path coverage is better:
Let T be a test suite for program P. T satisfies the path adequacy criterion for
P iff for each path p of P there exists at least one testcase in T that causes
the execution of p.

• Infeasible for all but trivial programs.

• Coverage notion is the ratio of covered paths to total number of paths – tends
to zero for programs with unbounded loops. Why?

• Approach is to consider ‘unrolling’ the code finitely Loop boundary coverage,
each loop is executed: Zero times, Once, More than once

Stuart Anderson Structural Testing c©2011-14

Example 19

Path Coverage

Stuart Anderson Structural Testing c©2011-14

Summary 20

Subsumption Relations

[P&Y p.231, Figure 12.8]

Stuart Anderson Structural Testing c©2011-14

21

Readings
Required Readings

• Textbook (Pezzè and Young): Chapter 12, Structural Testing

Suggested Readings

• Hong Zhu, Patrick A. V. Hall, and John H. R. May. 1997. Software unit
test coverage and adequacy. ACM Comput. Surv. 29, 4 (December 1997),
366-427.

http://dx.doi.org/10.1145/267580.267590

Stuart Anderson Structural Testing c©2011-14

http://dx.doi.org/10.1145/267580.267590

