Structural Testing

Stuart Anderson

® School of

informatics

Stuart Anderson Structural Testing (©2011-14

] School of _ ¢
- iInformatics

Types of Testing

When we write unit tests we consider:

1. Specification-based tests using specifications or models
2. Checklists of commonly occurring errors
3. Structural Testing

e These are two different kinds of test: where we consider details of the
implementation (as in 2 and 3) — known as white box testing — and where
we work from external descriptions, treating the implementation as an opaque
artefact with inputs and outputs: black box testing (as in 1).

e We also distinguish between tests which involve executing the code (dynamic
tests, which we have mainly been looking at) and those which do not: static
tests (code review, for example).

Stuart Anderson Structural Testing (©2011-14

] School of _ ¢
s iInformatics

Common Errors
e Can be from a particular programming community.
e Well-instrumented organisations monitor and summarise error occurrences.

e Professional good practice should make you sensitive to the errors you make
personally.

e The following are the “top three” from David Reilly’'s top ten Java programming
errors

— Concurrent access to shared variables by threads (3)
— Capitalization errors (2)
— Null pointers (1)

Stuart Anderson Structural Testing (©2011-14

o School of _e
7 ; Informatics

Concurrent access to shared variables by threads

public class MyCounter {
private int count = 0; // count starts at zero

public void incCount(int amount) {
count = count + amount;

+

public int getCount() {
return count;

+
+
MyCounter c;
// Thread 1 // Thread 2
c.incCount (1) ; c.incCount (1) ;
// join
c.getCount() == 7

Stuart Anderson Structural Testing (©2011-14

o School of _e
575 7 Informatics

Concurrent access to shared variables by threads

public class MyCounter {
private int count = 0; // count starts at zero

public synchronized void incCount(int amount) {
count = count + amount;

by

public int getCount() {
return count;

+
+

Synchronization... Even more important with shared external resources...

Stuart Anderson Structural Testing (©2011-14

o School of _ o
= Informatics

Capitalization Errors

Remember:

e All methods and member variables in the Java APl begin with lowercase letters.

e All methods and member variables use capitalization where a new word begins
— e.g. getDoubleValue().

Stuart Anderson Structural Testing (©2011-14

o School of _ o
= iInformatics

Null pointers

public static void main(String args[]) {
String[] list = new String[3]; // Accept up to 3 parameters
int index = O;

while((index < args.length) && (index < 3)) {
list[index] = argsl[index];
index++;

}

// Check all the parameters
for(int i = 0; i < list.length; i++) {
if(1ist[i] .equals("-help")) {

/]

} else if(list[i].equals("-cp")) {
/] o

+

// [else]

+
}

Stuart Anderson Structural Testing (©2011-14

o School of _ e
= informatics

Structural Testing
e Testing that is based on the structure of the program.

e Usually better for finding defects than for exploring the behaviour of the
system.

e Fundamental idea is that of basic block and flow graph — most work is
defined in those terms.

Two main approaches:

— Control oriented: how much of the control aspect of the code has been
explored?

— Data oriented: how much of the definition/use relationship between data
elements has been explored.

Stuart Anderson Structural Testing (©2011-14

o School of _ o
= iInformatics

Basic Blocks

e A basic block has at most one entry point and usually at most two exit points.

Can you think of exceptions to this?

e We decompose our program into basic blocks. These are the nodes of the
control graph.

e The edges of the control graph indicate control flow — possibly under some
conditions.

Stuart Anderson Structural Testing (©2011-14

® School of
5 Informatics

Code and Control Flow Graph Example
4’ int cgi_decode(char "encoded, char "decoded) i

A
{char "eptr = encoded;
char *dptr = decoded;
it ok =0,
while {*apir} {
False ue

-

char ¢
¢ = Teptr;
if fe=="+') {

r

Eal T
flse{ int digit_high = Hex_Values[*(++eptr}]

dptr = 93" int digit_low = Hex_Values{*(++eptr]];

! if tdigit_high == -1 || digit_low == -1} {

s e —J\—True

¥

slse {
dph’ 16 * digit_high + digit_low,

v
*dptr = 0%,]

retum ok;

}

—e

[P&Y p.213-214, Figures 12.1 & 12.2]

Stuart Anderson Structural Testing (©2011-14

o School of _ o
- informatics

Some tests for the cgi program

o Ty ={ “", “test”, “test+case%lDadequacy” }

— , 'test”, “testcaseJadequacy”

e 17 = { "adequate+test%0Dexecution%7U" }
— "adequate test< CR>executiond”

o 12 ={ "“%3D", “%A", “a+b", “test” }

— “:”, ?, “a b”, “test”
o Ty ={"" "+%0D+%4)" }
— Y7 Y<CR> O"

o T, = { "first+test%9Ktest%K9" }
— “first testOtest]”

Stuart Anderson Structural Testing (©2011-14

] School of _ ¢
- informatics

Statement Testing

e Statement Adequacy: all statements have been executed by at least one
test.

e Statement Coverage: for a particular test T, this is the quotient of the
number of statements executed during a run of T (not counting repeats) and
the number of statements in the program.

e The test set T is adequate if the Statement Coverage is 1.

e For our sample tests: T omits ok = 1 at line 34, T} executes all the code as
does T5.

e In general we do not know if statement coverage is achievable — why?

e All of this can be rephrased in terms of basic blocks — and we look at node
coverage in the control-flow graph.

e Statement coverage is a basic measure but is a fairly poor test of how well we
have exercised the code.

Stuart Anderson Structural Testing (©2011-14

°
Example 12 'nf
Statement Coverage
1=0
false
true
-A[1]
4 vV
return (1) > 144+
I

School of _ e
ormatics

Stuart Anderson

Structural Testing

©2011-14

o School of _ o
= informatics

Branch Coverage

e Statement Coverage gives fairly poor coverage of the flow of control in systems.

e For example, we can only guarantee to consider arriving at some basic block
from one of its predecessors.

e Branch adequacy attempts to resolve that:
Let T be a test suite for a program P. T satisfies the branch adequacy criterion
if for each branch B of P there exists at least one test case that exercises B.

e The branch coverage for a test suite is the ratio of branches tested by the
suite and the number of branches in the program under test.

e As usual it is undecidable whether there exists a test suite satisfying the branch
adequacy criterion.

Stuart Anderson Structural Testing (©2011-14

® School of _ e
Example 14 'nformatlcs
Branch Coverage
1=0
false
true
-Ali]
v v
return (1) > Fpn

L

Stuart Anderson Structural Testing (©2011-14

o School of _ o
= informatics

Condition Coverage

e There are issues concerning the adequacy of branch coverage in environments
where we allow compound conditions (because we might take a particular
branch for different reasons).

e This is exacerbated when we have ‘shortcut conditions’ that do not evaluate
some of the condition code.

e We frame this in terms of ‘basic conditions’ i.e. comparisons, basic properties
etc.

e The basic condition adequacy criterion is:

Let T be a test suite for program P. T covers all the basic conditions of P iff
each basic condition of P evaluates to true under some test in T and evaluates
to false under some test in T.

e Possible to extend to a ‘compound’ condition adequacy where all boolean

subformulae in conditions evaluate to both true and false.

Stuart Anderson Structural Testing (©2011-14

e School of _ e
Example 16 'nformatlcs
Condition Coverage
1=0
false
true
-Af1i]
4 Vv
return (1) > 144+

I

Stuart Anderson Structural Testing (©2011-14

o School of _ e
= informatics

Compound Condition Coverage
a && b && c && d && e (((a|| b) && c) || d) && e [P&Y p.221]

Test Case
(1) | True | True | True | True | True Test Case N b ¢ d €
(2) | True | True | True | True | False (1) | True | - | True | - | True
3) | True | True | True | False _ (2) | False | True | True - True
4) | True | True | False _ _ (3) | True - False | True | True
5) | True | False _ _ _ (4) | False | True | False | True | True
(6) | False B _ _ _ (5) | False | False - True | True
(6) | True - True - False
(7) | False | True | True - False
(8) | True - False | True | False
(9) | False | True | False | True | False
(10) | False | False - True | False
(11) | True - False | False -
(12) | False | True | False | False -
(13) | False | False - False -

Finally, Modified Condition(MC)/Decision Coverage(DC), aka Modified
Condition Adequacy Criterion:

e Satisfiable with N + 1 test cases (N variables).
e Good compromise, required in aviation quality standards.

Stuart Anderson Structural Testing (©2011-14

o School of _ o
—= informatics

Path Coverage

e Condition coverage still gives us a poor coverage of historical executions of the
system.

e Path coverage is better:
Let T be a test suite for program P. T satisfies the path adequacy criterion for
P iff for each path p of P there exists at least one testcase in T that causes
the execution of p.

e Infeasible for all but trivial programs.

e Coverage notion is the ratio of covered paths to total number of paths — tends
to zero for programs with unbounded loops. Why?

e Approach is to consider ‘unrolling’ the code finitely Loop boundary coverage,
each loop is executed: Zero times, Once, More than once

Stuart Anderson Structural Testing (©2011-14

® School of _ e
Example 19 'nformatlcs
Path Coverage
1=0
false
true
-Af1i]
Y %
return (1) > i+4

I

Stuart Anderson Structural Testing (©2011-14

School of _ e

Summary

THEORETICAL CRITERIA

PRACTICAL CRITERIA

Subsumption Relations

(Cyclomatic testing)

(Path testing)

Boundary interior testing

1

Loop boundary testing

LCSAJ testing)

Branch testing)

N YN /Y MY

Statement testing)

Compound condition testing

MCDC testing

2/

_/

(Branch and condition testing

&/

(Basic condition testing

N>

()
s informatics

[P&Y p.231, Figure 12.8]

Stuart Anderson

Structural Testing

©2011-14

] School of _ ¢
== iInformatics

Readings
Required Readings

e Textbook (Pezzé and Young): Chapter 12, Structural Testing

Suggested Readings

e Hong Zhu, Patrick A. V. Hall, and John H. R. May. 1997. Software unit
test coverage and adequacy. ACM Comput. Surv. 29, 4 (December 1997),

366-427.
http://dx.doi.org/10.1145/267580.267590

Stuart Anderson Structural Testing (©2011-14

http://dx.doi.org/10.1145/267580.267590

