
Specification-Based Testing 2

Stuart Anderson

Stuart Anderson Specification-Based Testing 2 c©2011-14



1

Overview

• We consider issues in the generation of test cases in particular defining coverage
criteria that reduce the combinatorial complexity of test case generation.

• We then go on to consider model-based black-box testing where we have some
model of the system and use that to decide how to exercise the system.
Typical examples of models include:
– Decision trees/graphs
– Workflows
– Finite State Machines
– Grammars

• All of these models provide some kind of abstraction of the systems behaviour
we can use this both to explore the systems behaviour and check that it agrees
with the abstraction.

Stuart Anderson Specification-Based Testing 2 c©2011-14



2

Reducing the number of test cases

[P&Y p.190: Table 11.3]

Stuart Anderson Specification-Based Testing 2 c©2011-14



3

Coverage Criterion

• If our tests just took a simple approach to exhaustive testing inputs drawn
from Display Mode, Fonts, and Screen Size we would need to consider 27 test
cases.

• With large numbers of categories this becomes prohibitive (e.g. n categories
each of size k has k × n possible cases).

• We can reduce this by just requiring that the input set cover all possible
m-tuples of each subset of m variables drawn from n.

• For example, in the case above we might require that we just ensure all pairs
of (Display Mode, Fonts), (Fonts, Screen Size) and (Display Mode, Screen
Size) are covered in the test set.
This reduces the test set from 27 combinations to 9.

Stuart Anderson Specification-Based Testing 2 c©2011-14



4

Ensuring all Pairs are Covered

[P&Y p.191: Table 11.4]

Stuart Anderson Specification-Based Testing 2 c©2011-14



5

Remarks

• Generally enumerating all possible combinations is exhaustive but probably
infeasible given cost constraints.

• Alternative is to choose some systematic way of reducing the space.

• In this case we chose to find all pairs.

• Other criteria are possible (see the reading).

Stuart Anderson Specification-Based Testing 2 c©2011-14



6

Model-based Testing

[P&Y p.169: Figure 10.3]

Stuart Anderson Specification-Based Testing 2 c©2011-14



7

Models

• Models typically provide some abstract representation of the behaviour of the
system.

• Typical notations are:

– Algebraic Specifications
– Control/Data Flow Graphs
– Logic-based specification
– Finite State Machine Specification
– Grammar-based Specification

Stuart Anderson Specification-Based Testing 2 c©2011-14



8

Control Flow Graphs

• Often specify the human process the system is intended to support (e.g. UML
Activity Diagrams).

• Can be used to represent both ‘normal’ and ‘erroneous’ behaviours (and
recovery behaviour).

• Abstract away from internal representations.

• Focus on interactions with the system

Stuart Anderson Specification-Based Testing 2 c©2011-14



9

Shipping Order Process

[P&Y p.259: Figure 14.7]

Stuart Anderson Specification-Based Testing 2 c©2011-14



10

Different Adequacy Criteria Are Applicable

• Node coverage – ensure that test cases cover all the nodes in the flow graph.

• Branch coverage – ensure we branch in both directions at each decision node.

• Mutations – we might also consider introducing mutations where the user
does not follow the control graph:

– can provide explanations of “automation surprises” (see Rushby paper in
readings).

– Machines are often better at remembering state than humans

Stuart Anderson Specification-Based Testing 2 c©2011-14



11

Coverage Criteria

[P&Y p.260: Figures 14.8 & 14.9]

Stuart Anderson Specification-Based Testing 2 c©2011-14



12

Finite State Machines

• Good at describing interactions in systems with a small number of modes.
• Good at describing transducers (via finite state machines).
• Widely used in industry (via Statecharts + associated tools — see Harel

reference in the Readings).
• Most systems are ‘infinite state’ (or effectively so), but many systems are

finite state + parameters – there are a finite set of states that control the way
data is moved around.

• Good examples are systems like communication protocols or many classes of
control systems (e.g. automated braking, flight control systems).

• Transitions are generally made on inputs (e.g. the discovery of some state of
affairs – e.g. that the wheels are locked in a braking system).

• Good for describing interactive systems that rarely reach a final state.

Stuart Anderson Specification-Based Testing 2 c©2011-14



13

Finite State Machines

[P&Y p.248: Figure 14.2]

Stuart Anderson Specification-Based Testing 2 c©2011-14



14

Designing Tests

• Sequence of inputs that drives the system though some sequence of transitions.
• We use coverage criteria to measure how successful we are in exploring the

specification.
• The simplest criterion is that we have covered all transitions.

[P&Y p.249: Table 14.1]

Stuart Anderson Specification-Based Testing 2 c©2011-14



15

Other Coverage Criteria

• Implementations of FSM specification often have more state than the
specification (i.e. they may exhibit history sensitivity). Typically because
we introduce extra management into the system (e.g. the possibility to undo
some number of transitions).

• As a result we often use other coverage criteria that explore the behaviour
more thoroughly, e.g.:

– Single state path coverage: collection of paths that cover the states
– Single transition path coverage: collection of paths that cover all

transitions.
– Boundary interior loop coverage: criterion on number of times loops are

exercised.

Stuart Anderson Specification-Based Testing 2 c©2011-14



16

Other Coverage Criteria

• Errors included by adding an Error state.

• We can consider mutation to discover how the system responds to unexpected
inputs.

• We can use probabilistic automata to represent distributions of inputs if we
want to do randomised testing.

Stuart Anderson Specification-Based Testing 2 c©2011-14



17

Grammar-based Testing

• Grammars are used to describe well-formed inputs to systems.

• We might want to know the system responds correctly to all such inputs.

• We can use grammars to generate sample inputs.

• We can use coverage criteria on a test set to see that all constructs are covered.

• We can use probabilistic CFGs to capture distributions on particular inputs.

• As XML is used increasingly to define transfer formats etc grammar-based
testing is becoming increasingly important.

• Grammar-based testing is fairly easy to automate.

Stuart Anderson Specification-Based Testing 2 c©2011-14



18

A Sample Grammar and Test Case

hfill [P&Y p.261: Figure 14.11] [P&Y p.264: Figure 14.14]

Stuart Anderson Specification-Based Testing 2 c©2011-14



19

Generating Tests

• Coverage criteria are important, e.g.:
– Every production at least once
– Boundary conditions on recursive productions – 0, 1, many

• Probabilistic CFGs (Context-Free Grammars) allow us to prioritise heavily used
constructs.

• Probabilistic CFGs can be used to capture and abstract real-world data.

• We can easily generate erroneous data using simple mutations in the rules or
final sentential forms.

• CFGs can be used to model interaction and low level detail in GUIs.

Stuart Anderson Specification-Based Testing 2 c©2011-14



20

Choice Criteria

• What form does the specification take?

• Experience of the team in different methods.

• Availability and quality of tools

• Cost/benefit analysis on the range of techniques and the available budget
(some approaches may require too much infrastructure)

Stuart Anderson Specification-Based Testing 2 c©2011-14



21

Readings
Required Readings

• Textbook (Pezzè and Young): Chapter 5, Finite Models
• Textbook (Pezzè and Young): Chapter 11, Combinatorial Testing
• Textbook (Pezzè and Young): Chapter 14, Model-Based Testing

Suggested Readings

• David Harel, Statecharts: a visual formalism for complex systems, Science
of Computer Programming, Volume 8, Issue 3, June 1987, pp. 231-274.
http://dx.doi.org/10.1016/0167-6423(87)90035-9

• John Rushby, Using model checking to help discover mode confusions and
other automation surprises, Reliability Engineering & System Safety, Volume
75, Issue 2, February 2002, pp. 167-177. http://dx.doi.org/10.1016/

S0951-8320(01)00092-8

Stuart Anderson Specification-Based Testing 2 c©2011-14

http://dx.doi.org/10.1016/0167-6423(87)90035-9
http://dx.doi.org/10.1016/S0951-8320(01)00092-8
http://dx.doi.org/10.1016/S0951-8320(01)00092-8

