
Structural Testing

(c) 2007 Mauro Pezzè & Michal Young Ch 12, slide 1

Learning objectivesLearning objectives

• Understand rationale for structural testing • Understand rationale for structural testing
– How structural (code-based or glass-box) testing

complements functional (black-box) testingcomplements functional (black-box) testing

• Recognize and distinguish basic terms
Ad – Adequacy, coverage

• Recognize and distinguish characteristics of
 l i icommon structural criteria

• Understand practical uses and limitations of
structural testing

(c) 2007 Mauro Pezzè & Michal Young Ch 12, slide 2

“Structural” testingStructural testing

• Judging test suite thoroughness based on the • Judging test suite thoroughness based on the
structure of the program itself

Also known as “white box” “glass box” or “code– Also known as white-box , glass-box , or code-
based” testing

– To distinguish from functional (requirements-based – To distinguish from functional (requirements-based,
“black-box” testing)

– “Structural” testing is still testing product functionality
against its specification. Only the measure of thoroughness
has changed.

(c) 2007 Mauro Pezzè & Michal Young Ch 12, slide 3

Why structural (code-based) testing?Why structural (code-based) testing?

• One way of answering the question “What is • One way of answering the question What is
missing in our test suite?”
– If part of a program is not executed by any test case If part of a program is not executed by any test case

in the suite, faults in that part cannot be exposed
– But what’s a “part”?

• Typically, a control flow element or combination:
• Statements (or CFG nodes), Branches (or CFG edges)
• Fragments and combinations: Conditions paths • Fragments and combinations: Conditions, paths

• Complements functional testing: Another way
to recognize cases that are treated differentlyto recognize cases that are treated differently
– Recall fundamental rationale: Prefer test cases that

are treated differently over cases treated the same

(c) 2007 Mauro Pezzè & Michal Young Ch 12, slide 4

No guaranteesNo guarantees

• Executing all control flow elements does not • Executing all control flow elements does not
guarantee finding all faults

Execution of a faulty statement may not always – Execution of a faulty statement may not always
result in a failure

• The state may not be corrupted when the statement is The state may not be corrupted when the statement is
executed with some data values

• Corrupt state may not propagate through execution to
t ll l d t f ileventually lead to failure

• What is the value of structural coverage?
– Increases confidence in thoroughness of testing

• Removes some obvious inadequacies

(c) 2007 Mauro Pezzè & Michal Young Ch 12, slide 5

Structural testing complements
functional testing

• Control flow testing includes cases that may not • Control flow testing includes cases that may not
be identified from specifications alone

Typical case: implementation of a single item of the – Typical case: implementation of a single item of the
specification by multiple parts of the program

– Example: hash table collision (invisible in interface – Example: hash table collision (invisible in interface
spec)

• Test suites that satisfy control flow adequacy • Test suites that satisfy control flow adequacy
criteria could fail in revealing faults that can be
caught with functional criteriacaught with functional criteria
– Typical case: missing path faults

(c) 2007 Mauro Pezzè & Michal Young Ch 12, slide 6

Structural testing in practiceStructural testing in practice
• Create functional test suite first, then measure Create functional test suite first, then measure

structural coverage to identify see what is missing
• Interpret unexecuted elements

may be due to natural differences between specification and – may be due to natural differences between specification and
implementation

– or may reveal flaws of the software or its development process
• inadequacy of specifications that do not include cases present in • inadequacy of specifications that do not include cases present in

the implementation
• coding practice that radically diverges from the specification
• inadequate functional test suitesinadequate functional test suites

• Attractive because automated
coverage measurements are convenient progress indicators– coverage measurements are convenient progress indicators

– sometimes used as a criterion of completion
• use with caution: does not ensure effective test suites

(c) 2007 Mauro Pezzè & Michal Young Ch 12, slide 7

Statement testingStatement testing

• Adequacy criterion: each statement (or node in • Adequacy criterion: each statement (or node in
the CFG) must be executed at least once
C• Coverage:

executed statements
statements

• Rationale: a fault in a statement can only be Rationale: a fault in a statement can only be
revealed by executing the faulty statement

(c) 2007 Mauro Pezzè & Michal Young Ch 12, slide 8

Statements or blocks?Statements or blocks?

• Nodes in a control flow graph often represent • Nodes in a control flow graph often represent
basic blocks of multiple statements

Some standards refer to basic block coverage or – Some standards refer to basic block coverage or
node coverage

– Difference in granularity not in concept– Difference in granularity, not in concept

• No essential difference
100% d 100% t t t – 100% node coverage <-> 100% statement coverage

• but levels will differ below 100%

A test case that improves one will improve the other– A test case that improves one will improve the other
• though not by the same amount, in general

(c) 2007 Mauro Pezzè & Michal Young Ch 12, slide 9

Example
{char *eptr = encoded ;

int cgi _decode (char *encoded , char *decoded)

A{ p ;
char *dptr = decoded ;
int ok = 0;

while (*eptr) { B
T0 =
{“”, “test”,

char c ;
c = *eptr ;
if (c == '+') {

TrueFalse

TFalse

C

{ , test ,
“test+case%1Dadequacy”}
17/18 = 94% Stmt Cov.

*dptr = ' ';
}

True

True

False

False

 elseif (c == '%') {
D E

T1 =
{“adequate+test%0Dexecuti

on%7U”}
int digit _high = Hex _Values [*(++eptr)];
int digit _low = Hex_Values [*(++eptr)];
if (digit _high == -1 || digit _low == -1) {

TrueFalse

else
*dptr = *eptr ;
}

F G18/18 = 100% Stmt Cov.

T2 =
{“%3 ” “%A” “ b” ok = 1;

}
else {
*dptr = 16 * digit_high +
digit _low;
}

H I{“%3D”, “%A”, “a+b”,
“test”}
18/18 = 100% Stmt Cov.

*dptr = '\0';
return ok ;
}

++dptr;
++eptr;
}

LM

(c) 2007 Mauro Pezzè & Michal Young Ch 12, slide 10

Coverage is not sizeCoverage is not size

• Coverage does not depend on the number of • Coverage does not depend on the number of
test cases

T T : T > T T < T– T0 , T1 : T1 >coverage T0 T1 <cardinality T0

– T1 , T2 : T2 =coverage T1 T2 >cardinality T1

• Minimizing test suite size is seldom the goal
– small test cases make failure diagnosis easier
– a failing test case in T2 gives more information for

fault localization than a failing test case in T1

(c) 2007 Mauro Pezzè & Michal Young Ch 12, slide 11

“All statements” can miss some cases

 {char *eptr = encoded ;
char *dptr = decoded ;

int cgi _decode (char *encoded , char *decoded)

A
• Complete statement

coverage may not imply
int ok = 0;

h

while (*eptr) {
TrueFalse

B

executing all branches in
a program

• Example:
char c ;
c = *eptr ;
if (c == '+') {

*dptr = ' ';
}

TrueFalse
 elseif (c == '%') {

C

D E

– Suppose block F were
missing

– Statement adequacy
}

int digit _high = Hex_Values [*(++eptr)];
int digit _low = Hex_Values [*(++eptr)];
if (digit_high == -1 || digit _low == -1) {

TrueFalse

else {
*dptr = *eptr ;
}

F G

would not require false
branch from D to L

T3 =
{“” “ %0D %4J”}

ok = 1;
}

True

else {
*dptr = 16 * digit_high +
digit _low;
}

False

H I

{“”, “+%0D+%4J”}
100% Stmt Cov.
No false branch from D

*dptr = '\0';
return ok ;
}

}

++dptr;
++eptr;
}

LM

(c) 2007 Mauro Pezzè & Michal Young Ch 12, slide 12

} }

Branch testingBranch testing

• Adequacy criterion: each branch (edge in the • Adequacy criterion: each branch (edge in the
CFG) must be executed at least once

• Coverage:• Coverage:
executed branches

branches# branches

T = {“” “+%0D+%4J”} T3 = { , +%0D+%4J }
100% Stmt Cov. 88% Branch Cov. (7/8 branches)

T2 = {“%3D”, “%A”, “a+b”, “test”}
100% Stmt Cov. 100% Branch Cov. (8/8 branches)

(c) 2007 Mauro Pezzè & Michal Young Ch 12, slide 13

100% Stmt Cov. 100% Branch Cov. (8/8 branches)

Statements vs branchesStatements vs branches

• Traversing all edges of a graph causes all nodes • Traversing all edges of a graph causes all nodes
to be visited

So test suites that satisfy the branch adequacy – So test suites that satisfy the branch adequacy
criterion for a program P also satisfy the statement
adequacy criterion for the same programadequacy criterion for the same program

• The converse is not true (see T3)
A statement adequate (or node adequate) test suite – A statement-adequate (or node-adequate) test suite
may not be branch-adequate (edge-adequate)

(c) 2007 Mauro Pezzè & Michal Young Ch 12, slide 14

“All branches” can still miss conditionsAll branches can still miss conditions

• Sample fault: missing operator (negation)• Sample fault: missing operator (negation)
digit_high == 1 || digit_low == -1

• Branch adequacy criterion can be satisfied by
varying only digit_low
– The faulty sub-expression might never determine the

result
– We might never really test the faulty condition,

even though we tested both outcomes of the branch

(c) 2007 Mauro Pezzè & Michal Young Ch 12, slide 15

Condition testingCondition testing

• Branch coverage exposes faults in how a • Branch coverage exposes faults in how a
computation has been decomposed into cases

intuitively attractive: check the programmer’s case – intuitively attractive: check the programmer s case
analysis

– but only roughly: groups cases with the same – but only roughly: groups cases with the same
outcome

• Condition coverage considers case analysis in • Condition coverage considers case analysis in
more detail

also individual conditions in a compound Boolean – also individual conditions in a compound Boolean
expression

• e.g., both parts of digit high == 1 || digit low == -1

(c) 2007 Mauro Pezzè & Michal Young Ch 12, slide 16

e.g., both parts of digit_high 1 || digit_low 1

Basic condition testingBasic condition testing

• Adequacy criterion: each basic condition must be • Adequacy criterion: each basic condition must be
executed at least once
C• Coverage:

truth values taken by all basic conditions
2 * # basic conditions

(c) 2007 Mauro Pezzè & Michal Young Ch 12, slide 17

Basic conditions vs branchesBasic conditions vs branches

• Basic condition adequacy criterion can be • Basic condition adequacy criterion can be
satisfied without satisfying branch coverage

T4 = {“first+test%9Ktest%K9”}
satisfies basic condition adequacy
does not satisfy branch condition adequacydoes not satisfy branch condition adequacy

B h d b i diti t blBranch and basic condition are not comparable
(neither implies the other)

(c) 2007 Mauro Pezzè & Michal Young Ch 12, slide 18

Covering branches and conditionsCovering branches and conditions

• Branch and condition adequacy: Branch and condition adequacy:
– cover all conditions and all decisions

• Compound condition adequacy:
– Cover all possible evaluations of compound conditions
– Cover all branches of a decision tree

digit_high == -1

true false

digit_low == 1 FALSE

TRUE

true false

FALSE

(c) 2007 Mauro Pezzè & Michal Young Ch 12, slide 19

Compound conditions:
Exponential complexity

(((a || b) && c) || d) && e(((||)) ||)

Test a b c d e
Case
(1) T T T(1) T — T — T
(2) F T T — T
(3) T — F T T
(4) F T F T T
(5) F F — T T(5) F F — T T
(6) T — T — F
(7) F T T — F
(8) T — F T F
(9) F T F T F(9) F T F T F
(10) F F — T F
(11) T — F F —
(12) F T F F —
(13) F F — F —(13) F F F

•short-circuit evaluation often reduces this to a more manageable
number, but not always

(c) 2007 Mauro Pezzè & Michal Young Ch 12, slide 20

number, but not always

Modified condition/decision (MC/DC)Modified condition/decision (MC/DC)

• Motivation: Effectively test important • Motivation: Effectively test important
combinations of conditions, without
exponential blowup in test suite size p p
– “Important” combinations means: Each basic

condition shown to independently affect the
 f h d i ioutcome of each decision

• Requires:
 h b d C – For each basic condition C, two test cases,

– values of all evaluated conditions except C are the
samesame

– compound condition as a whole evaluates to true for
one and false for the other

(c) 2007 Mauro Pezzè & Michal Young Ch 12, slide 21

f

MC/DC: linear complexityMC/DC: linear complexity
• N+1 test cases for N basic conditions

(((a || b) && c) || d) && e

Test a b c d e outcome
Case
(1) true -- true -- true true
(2) false true true -- true true
(3) true -- false true true true
(6) true -- true -- false false
(11) true -- false false -- false(11) true false false false
(13) false false -- false -- false

• Underlined values independently affect the output of the decision
• Required by the RTCA/DO-178B standard

(c) 2007 Mauro Pezzè & Michal Young Ch 12, slide 22

Comments on MC/DCComments on MC/DC

• MC/DC is • MC/DC is
– basic condition coverage (C)
– branch coverage (DC)branch coverage (DC)
– plus one additional condition (M):

every condition must independently affect the
decision’s output

• It is subsumed by compound conditions and
b ll th it i di d fsubsumes all other criteria discussed so far

– stronger than statement and branch coverage
A d b l f h h d i • A good balance of thoroughness and test size
(and therefore widely used)

(c) 2007 Mauro Pezzè & Michal Young Ch 12, slide 23

Paths? (Beyond individual branches)Paths? (Beyond individual branches)

• Should we explore • Should we explore
sequences of branches
(paths) in the control (p)
flow?

• Many more paths than
branches
– A pragmatic compromise

will be neededwill be needed

(c) 2007 Mauro Pezzè & Michal Young Ch 12, slide 24

Path adequacyPath adequacy

• Decision and condition adequacy criteria • Decision and condition adequacy criteria
consider individual program decisions
P th t ti f id bi ti f • Path testing focuses consider combinations of
decisions along paths

• Adequacy criterion: each path must be
executed at least once

• Coverage:
executed paths# executed paths

paths

(c) 2007 Mauro Pezzè & Michal Young Ch 12, slide 25

Practical path coverage criteriaPractical path coverage criteria

• The number of paths in a program with loops is • The number of paths in a program with loops is
unbounded

the simple criterion is usually impossible to satisfy– the simple criterion is usually impossible to satisfy

• For a feasible criterion: Partition infinite set of
th i t fi it b f lpaths into a finite number of classes

• Useful criteria can be obtained by limiting
– the number of traversals of loops
– the length of the paths to be traversed
– the dependencies among selected paths

(c) 2007 Mauro Pezzè & Michal Young Ch 12, slide 26

Boundary interior path testingBoundary interior path testing

• Group together paths that differ only in the • Group together paths that differ only in the
subpath they follow when repeating the body of
a loopa loop
– Follow each path in the control flow graph up to the

first repeated nodefirst repeated node
– The set of paths from the root of the tree to each

leaf is the required set of subpaths for leaf is the required set of subpaths for
boundary/interior coverage

(c) 2007 Mauro Pezzè & Michal Young Ch 12, slide 27

Boundary interior adequacy for cgi-decodeBoundary interior adequacy for cgi-decode

(c) 2007 Mauro Pezzè & Michal Young Ch 12, slide 28

Limitations of boundary interior adequacyLimitations of boundary interior adequacy

• The number of paths can still grow exponentially• The number of paths can still grow exponentially

if (a) { • The subpaths through this control
S1;

}
if (b) {

p g
flow can include or exclude each of
the statements Si, so that in total N
b h l i 2N h h

if (b) {
S2;

}
if (c) {

branches result in 2N paths that
must be traversed
Choosing input data to force if (c) {

S3;
}

• Choosing input data to force
execution of one particular path
may be very difficult, or even ...

if (x) {
Sn;

may be very difficult, or even
impossible if the conditions are not
independent

(c) 2007 Mauro Pezzè & Michal Young Ch 12, slide 29

}

Loop boundary adequacyLoop boundary adequacy

• Variant of the boundary/interior criterion that treats • Variant of the boundary/interior criterion that treats
loop boundaries similarly but is less stringent with
respect to other differences among pathsp g p

• Criterion: A test suite satisfies the loop boundary
adequacy criterion iff for every loop:

– In at least one test case, the loop body is iterated zero times
– In at least one test case, the loop body is iterated once

I t l t t t th l b d i it t d th – In at least one test case, the loop body is iterated more than
once

• Corresponds to the cases that would be considered in a Corresponds to the cases that would be considered in a
formal correctness proof for the loop

(c) 2007 Mauro Pezzè & Michal Young Ch 12, slide 30

LCSAJ adequacyLCSAJ adequacy

• Linear Code Sequence And Jumps: • Linear Code Sequence And Jumps:
sequential subpath in the CFG starting and
ending in a branchending in a branch
– TER1 = statement coverage

TER branch coverage– TER2 = branch coverage
– TERn+2 = coverage of n consecutive LCSAJs

(c) 2007 Mauro Pezzè & Michal Young Ch 12, slide 31

Cyclomatic adequacyCyclomatic adequacy

• Cyclomatic number:• Cyclomatic number:
number of independent paths in the CFG

– A path is representable as a bit vector, where each component p p , p
of the vector represents an edge

– “Dependence” is ordinary linear dependence between (bit)
vectorsvectors

• If e = #edges, n = #nodes, c = #connected components
of a graph, it is:of a graph, it is:

– e - n + c for an arbitrary graph
– e - n + 2 for a CFG

• Cyclomatic coverage counts the number of
independent paths that have been exercised, relative
t l ti l it

(c) 2007 Mauro Pezzè & Michal Young Ch 12, slide 32

to cyclomatic complexity

Towards procedure call testingTowards procedure call testing

• The criteria considered to this point measure • The criteria considered to this point measure
coverage of control flow within individual
procedures procedures.
– not well suited to integration or system testing

Ch l it t • Choose a coverage granularity commensurate
with the granularity of testing
– if unit testing has been effective, then faults that

remain to be found in integration testing will be
primarily interface faults and testing effort should primarily interface faults, and testing effort should
focus on interfaces between units rather than their
internal details

(c) 2007 Mauro Pezzè & Michal Young Ch 12, slide 33

Procedure call testingProcedure call testing

• Procedure entry and exit testing• Procedure entry and exit testing
– procedure may have multiple entry points (e.g.,

Fortran) and multiple exit pointsFortran) and multiple exit points

• Call coverage
Th t i t b ll d f – The same entry point may be called from many
points

(c) 2007 Mauro Pezzè & Michal Young Ch 12, slide 34

Subsumption relationSubsumption relation

(c) 2007 Mauro Pezzè & Michal Young Ch 12, slide 35

Satisfying structural criteriaSatisfying structural criteria

• Sometimes criteria may not be satisfiable• Sometimes criteria may not be satisfiable
– The criterion requires execution of

• statements that cannot be executed as a result of• statements that cannot be executed as a result of
– defensive programming
– code reuse (reusing code that is more general than strictly

required for the application)

• conditions that cannot be satisfied as a result of
– interdependent conditionsinterdependent conditions

• paths that cannot be executed as a result of
– interdependent decisions

(c) 2007 Mauro Pezzè & Michal Young Ch 12, slide 36

Satisfying structural criteriaSatisfying structural criteria

• Large amounts of fossil code may indicate • Large amounts of fossil code may indicate
serious maintainability problems

But some unreachable code is common even in well– But some unreachable code is common even in well-
designed, well-maintained systems

Solutions:• Solutions:
– make allowances by setting a coverage goal less

than 100%than 100%
– require justification of elements left uncovered

• RTCA-DO-178B and EUROCAE ED-12B for modified MC/DC• RTCA-DO-178B and EUROCAE ED-12B for modified MC/DC

(c) 2007 Mauro Pezzè & Michal Young Ch 12, slide 37

SummarySummary

• We defined a number of adequacy criteria We defined a number of adequacy criteria
– NOT test design techniques!

• Different criteria address different classes of errors
• Full coverage is usually unattainable

– Remember that attainability is an undecidable problem!

d h i bl “i i ” i ll h d• …and when attainable, “inversion” is usually hard
– How do I find program inputs allowing to cover something

buried deeply in the CFG?p y
– Automated support (e.g., symbolic execution) may be

necessary

• Therefore rather than requiring full adequacy the • Therefore, rather than requiring full adequacy, the
“degree of adequacy” of a test suite is estimated by
coverage measures

(c) 2007 Mauro Pezzè & Michal Young Ch 12, slide 38

– May drive test improvement

