
Software Testing: Tutorial 3

Category-Partition Testing

• Prerequisites: before the tutorial you should review section 11.2 of the Pezzè & Young.

• Preparation: read the following functional specification (exercise 11.4 of Pezzè &
Young).

Your task is to: Derive test specifications using the category partition method for the fol-
lowing Airport connection check function.

Airport connection check: The airport connection check is part of an
(imaginary) travel reservation system. It is intended to check the validity
of a single connection between two flights in an itinerary. It is described
here at a fairly abstract level, as it might be described in a preliminary
design before concrete interfaces have been worked out.

Specification Signature: Valid Connection (Arriving Flight: flight, De-
parting Flight: flight) returns Validity Code

Validity Code 0 (OK) is returned if Arriving Flight and Departing Flight
make a valid connection (the arriving airport of the first is the depart-
ing airport of the second) and there is sufficient time between arrival and
departure according to the information in the airport database described
below.

Otherwise, a validity code other than 0 is returned, indicating why the
connection is not valid.

1



Data types

Flight: A “flight” is a structure consisting of

• A unique identifying flight code, three alphabetic characters followed by up to four
digits. (The flight code is not used by the Valid Connection function.)

• The originating airport code (3 characters, alphabetic)

• The scheduled departure time of the flight (in universal time)

• The destination airport code (3 characters, alphabetic)

• The scheduled arrival time at the destination airport.

Validity Code: The validity code is one of a set of integer values with the following inter-
pretations:

• 0: The connection is valid.

• 10: Invalid airport code (airport code not found in database)

• 15: Invalid connection, too short: There is insufficient time between arrival of first
flight and departure of second flight.

• 16: Invalid connection, flights do not connect. The destination airport of Arriving
Flight is not the same as the originating airport of Departing Flight.

• 20: Another error has been recognized (e.g., the input arguments may be invalid,
or an unanticipated error was encountered).

Airport Database: The Valid Connection function uses an internal, in-memory table of
airports which is read from a configuration file at system initialization. Each record in
the table contains the following information:

• Three-letter airport code. This is the key of the table and can be used for
lookups.

• Airport zone. In most cases the airport zone is a two-letter country code, e.g.,
”US” for the United States. However, where passage from one country to another
is possible without a passport, the airport zone represents the complete zone in
which passport-free travel is allowed. For example, the code ”EU” represents the
European countries which are treated as if they were a single country for purposes
of travel.

• Domestic connect time. This is an integer representing the minimum number
of minutes that must be allowed for a domestic connection at the airport. A
connection is “domestic” if the originating and destination airports of both flights
are in the same airport zone.

• International connect time. This is an integer representing the minimum num-
ber of minutes that must be allowed for an international connection at the airport.
The number -1 indicates that international connections are not permitted at the
airport. A connection is “international” if any of the originating or destination
airports are in different zones.

2



Activities

Having considered this specification you should carry out the following activities that will be
facilitated by your tutor:

1. Individually, have a look again at the specification and write down a list of Independently
Testable Functions (ITFs) in this specification. There might be more than one —
however, carefully justify each ITF you have identified so you can argue for it.

[take max 5 mins to do this]

2. Choose a partner you will work with in the tutorial and discuss your decision from
activity 1 (if the tutorial has an odd number of students you will need to have one
group of three). Agree on a final list of ITFs for this specification.

[take max 5 mins for this activity]

3. Whole group discussion: read out your lists of ITFs: the tutor will write up distinct
ITFs so you have a definitive list of ITFs — be selective, if the group does not find the
justification convincing do not include a proposed ITF in the final list. Hint: there are
probably only 2 or 3 ITFs depending on how you look at it.

[take max 5 mins for this activity]

4. Select two of the ITFs and split the group to work on them separately. Each group
should work in the following way:

5. Individually, each group member should work to identify the parameters and environ-
ment elements that are relevant to their ITF. Once you have identified these you should
then work out characteristics of your parameters and environment elements.

[allow around 10 mins for activities 4 and 5]

6. Together with your partner(s) agree your merged list, then agree the list with your
group.

[allow 5 mins for this activity].

7. Individually, identify value classes for each of your characteristics. Check these with
your partner and agree a list.

[allow 10 mins for this activity].

8. Together with your partner(s) work out how many test case specifications you have
assuming no constraints between the value classes. Also, pay some attention to the
expected result for a test. Then work together to try to identify situations where you
can use constraints to reduce the number of possible test case specifications.

[take a further 10 mins for this activity]

9. Finally, as a group try to merge your efforts to create a set of test case specifications
for your chosen ITF.

[allow 5 mins for this]

3


