
Integration Testing

Stuart Anderson

Stuart Anderson Integration Testing c©2011



1

Unit Test vs Integration Testing

• The ideal in unit testing is to isolate a single code unit and test it against its
behavioural specification.

• This may involve the construction of extensive ‘scaffolding’ code that allows
the tests to proceed. In particular the tester needs to construct:
– Driver code to drive the code unit. This is usually contained in the individual

JUnit tests.
– Stub code to take the place of functions or objects that are used by the

code unit in providing functionality. Often the stub code is standing in for
as yet unwritten code and the stub has limited functionality using lookup to
return a value rather than compute it.

• Unit test depends on having some kind of specification for the code units.
• Unit tests often expend effort on testing functionality that is never exercised

in the system for which the code module has been constructed.

Stuart Anderson Integration Testing c©2011



isolation, stub/mock objects 2

Unit Test vs Integration Testing

Stuart Anderson Integration Testing c©2011



3

Unit Test vs Integration Testing

• Integration or Incremental testing aims to reduce the need for scaffolding
code by using the actual code modules as they are developed to provide the
scaffolding for testing.

• Integration or Incremental test provides a means of carrying out unit tests
but at the same time it tests the integration of the system across module
boundaries.

Stuart Anderson Integration Testing c©2011



4

What are Software Errors?

• What are software errors?

Discrepancies between computed values and theoretically correct values.

• What are safety-related software errors?

Software errors that cost human lives

• In an interesting study of critical failures, Lutz concludes that interface failures
contribute significantly to the overall fault density in a system.

The following slides are Lutz’s on her analysis of errors in the Voyager and Galileo
space probes...

Stuart Anderson Integration Testing c©2011



Error Distributions in Embedded Software 5

Case Study on Voyager and Galileo

• What is the Goal?
Making the system secure by removing safety-related errors.

• How?
Find the source of the problem

Stuart Anderson Integration Testing c©2011



Root Causes 6

Case Study on Voyager and Galileo

• Lutz’s Methodology is to attempt to find root causes

• Nakajo and Kume’s classification scheme leads backwards in time from the
evident software error to an analysis of its root cause

Stuart Anderson Integration Testing c©2011



Documented Software Errors 7

Case Study on Voyager and Galileo

Stuart Anderson Integration Testing c©2011



Human Errors 8

Case Study on Voyager and Galileo

Stuart Anderson Integration Testing c©2011



Process Flaws 9

Case Study on Voyager and Galileo

Stuart Anderson Integration Testing c©2011



10

Case Study on Voyager and Galileo

Stuart Anderson Integration Testing c©2011



11

Recommendations for Solving the Problem

Stuart Anderson Integration Testing c©2011



12

How to Approach Integration Testing
• In any system we have a dependency

graph between modules of the system.
• Often this is hierarchical (but not

necessarily).
• We have two dimensions to consider

in constructing and integration test
strategy:
– Whether we approach integration

incrementally or whether we adopt
a non-incremental strategy.

– If we adopt an incremental strategy,
should we adopt a top-down or
bottom-up strategy?

Stuart Anderson Integration Testing c©2011



(Myers) Comparison 13

(Non-)Incremental Strategies

1. Non-incremental testing requires the creation of more scaffolding. In particular
if we test incrementally bottom-up we require fewer stub programs.

2. Incremental testing reveals errors and misunderstandings across interfaces
earlier than non-incremental approaches.

3. Incremental testing should lead to earlier identification of problems and easier
debugging.

4. Incremental testing should be more thorough since each increment fully tests
some behavioural specification of a sub-component of the system (whereas
non-incremental testing tests just the overall functionality).

5. Non-incremental may make more effective use of test effort since it focuses on
the system behaviour.

6. Non-incremental test might encourage more concurrency in doing the testing.

Stuart Anderson Integration Testing c©2011



14

Top-down vs Bottom-up Incremental Test

• This choice is dependent on the particular structure of the system under test.

• Architecture is a key element:

– Layered architectures (e.g. operating system, protocol stack) lend
themselves to bottom-up test.

– Top-down approaches can be useful in testing software that is intended to
be generic e.g. components in product lines that provide a service on top of
system-specific infrastructure.

Stuart Anderson Integration Testing c©2011



15

Top-down Incremental Test

• Test commences with the top module in the system and tests in layers
descending through the dependency graph for the system.

• This may require successive layers of ‘stub’ modules that replace modules lower
in the dependency graph.

Stuart Anderson Integration Testing c©2011



16

Top-down Incremental Test
The complexity of the stub modules is an issue for top-down test:

• Initially stub modules may be quite simple, just indicating that a particular
method or procedure call has taken place.

• This may not be adequate in later rounds of testing; one approach is to write
modules that always return the same sequence of results for a sequence of
calls i.e. those results that we expect for a particular test – but we also need
to check the calls have the expected parameters.

• Stubs are eventually replaced by real modules we might want to check the
behaviour of the real module is consistent with the behaviour of the stub.

• As stubs become more deeply embedded in a system, determining their
behaviour becomes increasingly difficult.

• Deciding the balance between different increments is difficult – e.g. do we
want a stub just to check if a module is used in the expected manner?

Stuart Anderson Integration Testing c©2011



17

Top-down Incremental Integration Testing

Stuart Anderson Integration Testing c©2011



Advantages and Disadvantages 18

Top-down Testing
Advantages

• If major defects are more
likely at the top level modules
top-down is beneficial.

• Getting I/O functions in early
can ease test writing.

• Early demonstration of
the main functionality can
be helpful in highlighting
requirements issues and in
boosting morale

Disadvantages

• Too much effort on stubs.
• Stub complexity can introduce errors.
• Defining stubs can be difficult if some code

is yet to be written.
• It may be impossible accurately to

reproduce test conditions.
• Some observations may be impossible to

make.
• Encourages the idea that test and

development can overlap.
• Encourages deferring full testing of modules

(until lower level modules are complete).

Stuart Anderson Integration Testing c©2011



19

Bottom-up Testing

• Initiate testing with unit tests for the bottom modules in the dependency
graph.

• Candidates for inclusion in the next batch of tests depend on the dependency
structure – a module can be included if all the modules it depends on have
been tested (issue about potential circularity need to consider connected
components).

• Prioritisation of modules for inclusion in the test sequence should include their
‘criticality’ to the correct operation of the system.

Stuart Anderson Integration Testing c©2011



20

Bottom-up Incremental Integration Testing

Stuart Anderson Integration Testing c©2011



Advantages and Disadvantages 21

Bottom-up Testing
Advantages

• Helpful if errors are likely deep
down in the dependency structure
(e.g. in hardware specific code).

• Test conditions are easier to
create.

• Observation of test results is
reasonably easy.

• Reduced effort in creating stub
modules.

Disadvantages

• Need to create driver modules
(but arguably this is easier than
creating stub code – and tools like
JUnit help).

• The entire system is subjected
to the smallest amount of test
(because the top modules are
included in the tests at the final
stage).

Stuart Anderson Integration Testing c©2011



22

Hybrid Strategies

• It is clear that judicious combination of stubs and drivers can be used to
integrate in a middle-out approach.

• Also for some groups of modules we may want to take a non-iterative approach
and just consider testing them all at once (this means we choose a bigger
granularity for our integration steps).

• Using such approaches there are a range of potential criteria for deciding how
to group modules:
– Criticality: decide on groups of modules that provide the most critical

functionality and choose to integrate those first.
– Cost: look for collections of modules with few dependencies on code lower

in the dependency graph and choose to integrate there first. The goal here
is to reduce the cost of creating stub code.

Stuart Anderson Integration Testing c©2011



23

Adequacy criteria

• Recall the definitions of coupling and cohesion from earlier software
engineering courses. Both are qualitative measures of the properties of
dependencies and module structure in programs. They are used to assess the
quality of the modular structure of a system:
– Cohesion: is a measure of how strongly elements in a module relate to

one another. Generally we expect to see elements in a module having high
cohesion with one another and lower level of relatedness to objects outside
the module.

– Coupling: is a measure of relatedness of the objects in a module to other
modules. Generally we expect to see low coupling to other modules.

• If we identify elements in a system that contribute to coupling (this is a white-
box measure) then we might be able to define coverage criteria for integration
tests.

Stuart Anderson Integration Testing c©2011



Kinds of Coupling 24

Coupling-based Integration Test Adequacy

• Call coupling: component A calls another component B without passing
parameters, and A and B do not share any common variable references, or
common references to external media.

• Parameter coupling: A calls B and passes one or more data items as a
parameter.

• Shared data coupling: A calls B and they both refer to the same data object
(either globally or non-locally).

• External device coupling: A calls B and they both access the same external
medium (for example, a file or sensor or actuator).

Stuart Anderson Integration Testing c©2011



25

Coupling-based Coverage: Basics

• Coupling-based testing requires that the program execute from definitions of
actual parameters through calls to uses of the formal parameters.

• A coupling path is a sequence of statements that, when executed, proceed
from a definition of a variable, through a call to a method or a return from a
method, to a use of that variable.

• A statement that contains a definition of a variable that can reach a call-site
or a return is called a last-def.

• When a value is transmitted into or out of a method (through a parameter, a
return value, or a non-local variable reference), the first time it is used on
an execution path after the method is entered or exited is called a first-use.

• Note that there can be more than one last-def and first-use of a given variable
and call-site.

Stuart Anderson Integration Testing c©2011



26

Coupling-based Coverage Criteria 1
Assume that there is a call from component C1 to component C2, and x is an
actual parameter in C1 that maps to a formal parameter y in C2, and the program
is tested with a set of test cases T. Then coverage criteria are:

• Call coupling requires that the set of paths executed by the test set T covers
all call-sites in the system.

• All-coupling-defs requires that for each last-def of each actual parameter x in
C1, the set of paths executed by the test set T contains at least one coupling
path to at least one first-use of y in C2.

• All-coupling-uses requires that for each last-def of x in C1, the set of paths
executed by the test set T contains at least one coupling path to each first-use
of y in C2.

Stuart Anderson Integration Testing c©2011



Examples 27

Couplingbased Coverage Basics
class A {

caller(...) {

x = 1; // last-def A1

if(...) // A-if1

...// Doesnt change x

if(...) // A-if2

x = 2; // last-def A2

someB.doSomething(x);

...

class B {

doSomething(int n) {

if() { // B-if

y = n; // first-use B1

} else {

y = -n; // first-use B2

}

• Coupling paths from A to B here are:
– A1-B1 (A-if1 false, A-if2 false)
– A1-B1 (A-if1 true, A-if2 false)
– A1-B2 (A-if1 false , A-if2 false)
– A1-B2 (A-if1 true , A-if2 false)
– A2-B1
– A2-B2

• All-coupling-defs would be satisfied by a test
which included, e.g. A1-B1 (A-if1 false, A-if2
false) and A2-B1.

• All-coupling-uses would be satisfied by a test
which included A1-B1 (A-if1+, A-if2-), A1-B2
(A-if1-, A-if2-), A2-B1, and A2-B2.

Stuart Anderson Integration Testing c©2011



28

Coupling-based Coverage Criteria 2

• All-coupling-paths:
– A subpath set to be the set of nodes on some subpath. There is a

many-to-one mapping between subpaths and subpath sets; that is, if there
is a loop within the subpath, the associated subpath set is the same no
matter how many iterations of the loop are taken.

– A coupling path set is the set of nodes on a coupling path.

• For each definition of x, the set of paths executed by T contains all coupling
path sets from the definition to all reachable uses.

• Note that if there is a loop involved, all-coupling-paths requires two test cases;
one for the case when the loop body is not executed at all, and another that
executes the loop body some arbitrary number of times (c.f. Boundary Interior
Loop criterion).

Stuart Anderson Integration Testing c©2011



29

Couplingbased Coverage: all-coupling-paths

Stuart Anderson Integration Testing c©2011



30

Summary
• We can choose a range of strategies involving non-incremental and incremental

approaches. Incremental approaches need to decide on the direction, sequence
and granularity of the steps. There is a wide range of choice in integration
steps.

• Integration testing has been relatively little studied and there are very few
good support tools.

• One approach to providing guidance on the adequacy of integration testing is
to use coupling-based coverage measures. This has been the subject of recent
research.

• We should view the sequence and scaffolding code as part of the system
release.

• We can use data collected on faults detected in the field to modify the
integration sequence to provide more adequate testing of error-prone parts of
the system.

Stuart Anderson Integration Testing c©2011



31

Required Readings

• Textbook (Pezzè and Young): Chapter 21, Integration and Component-
based Software Testing

• Textbook (Pezzè and Young): (beginning of) Chapter 15, Testing Object-
Oriented Software

• Robyn R. Lutz, Analyzing Software Requirements Errors in Safety-Critical,
Embedded Systems, In Proceedings of the IEEE International Symposium
on Requirements Engineering. IEEE Computer Society Press, Jan, 1993.
http://dx.doi.org/10.1109/ISRE.1993.324825

• Jeff Offutt, Aynur Abdurazik and Roger T. Alexander (2000). An Analysis
Tool for Coupling-based Integration Testing, The Sixth IEEE International
Conference on Engineering of Complex Computer Systems (ICECCS ’00), pp
172–178. http://dx.doi.org/10.1109/ICECCS.2000.873942

Stuart Anderson Integration Testing c©2011

http://dx.doi.org/10.1109/ISRE.1993.324825
http://dx.doi.org/10.1109/ICECCS.2000.873942


32

Example
CouplingDemo1

package st.coupling;

import java.util.Locale;

public class CouplingDemo {

public static void main(String[] args) {

Locale l = Locale.getDefault();

if(l.getLanguage().equals("en")) {

System.out.println("Hi there! I " +

"speak English too!");

}

String d = Tools.localisedDistance(l,

200);

System.out.println("Distance: " + d);

}

}

Tools
package st.coupling;

import java.util.Locale;

public class Tools {

public static String localisedDistance(

Locale l, double metres)

{

String ld;

if(! l.getLanguage().equals("en"))

System.out.println("Warning: " +

"non-English, assuming km");

if(l.getLanguage().equals("en"))

ld = (metres / 1600) + "mi";

else

ld = (metres / 1000) + "km";

return ld;

}

}

Stuart Anderson Integration Testing c©2011



33

Example
CouplingDemo2

package st.coupling;

import java.util.Locale;

public class CouplingDemo {

public static void main(String[] args) {

Locale l = Locale.GERMAN;

if(l.getLanguage().equals("en")) {

System.out.println("Hi there! I " +

"speak English too!");

}

String d = Tools.localisedDistance(l,

200);

System.out.println("Distance: " + d);

}

}

Tools
package st.coupling;

import java.util.Locale;

public class Tools {

public static String localisedDistance(

Locale l, double metres)

{

String ld;

if(! l.getLanguage().equals("en"))

System.out.println("Warning: " +

"non-English, assuming km");

if(l.getLanguage().equals("en"))

ld = (metres / 1600) + "mi";

else

ld = (metres / 1000) + "km";

return ld;

}

}

Stuart Anderson Integration Testing c©2011


