
Specification-Based Testing 1

Stuart Anderson

Stuart Anderson Specification-Based Testing 1 c©2011



1

Overview

• Basic terminology

• A view of faults through failure

• Systematic versus randomised testing

• A systematic approach to specification-based testing

• A simple example

Stuart Anderson Specification-Based Testing 1 c©2011



2

Terminology

• Independently Testable Feature (ITF): depends on the control and
observation that is available in the interface to the system – design for
testability will focus on providing the means to test important elements
independently.

• Test case: inputs, environment conditions, expected results.

• Test case specification: a property of test cases that identifies a class of test
cases.

• Test suite: a collection of test cases. A test suite for a system may comprise
several test suites for each ITF in the system.

• Test: the activity of executing a system for a particular test case.

Stuart Anderson Specification-Based Testing 1 c©2011



3

Faults, Errors and Failures

• Error: mistake made by a programmer during system implementation.

• Fault: the collection of program source code statements that causes a failure.

• Failure: external, incorrect behaviour of a program.

Stuart Anderson Specification-Based Testing 1 c©2011



Isolation, Mock Objects 4

Unit Testing

Stuart Anderson Specification-Based Testing 1 c©2011



Isolation 2 5

Dependent Tests (∼ integration)

Stuart Anderson Specification-Based Testing 1 c©2011



1/2 6

The Shape of Faults

“Failure regions for some of the infrequent equivalent classes”

Stuart Anderson Specification-Based Testing 1 c©2011



2/2 7

The Shape of Faults

Some simple faults have regular shapes

“Failure sets for the equivalent classes”

Stuart Anderson Specification-Based Testing 1 c©2011



8

Small faults are hard to find using random tests

• These graphs are from very simple programs.

• In some cases there is a clear connection between faults in the code and
patterns of failure in the software (argues for some structural testing).

• But some faults manifest as a few isolated points in the input space.

• Such faults are hard to find with random testing (because all points are equally
probable – or at least there is some distribution derived from use of the
software).

• Such faults often manifest at “boundaries” between different behaviours of the
system.

Stuart Anderson Specification-Based Testing 1 c©2011



9

Pentium FDIV bug
Pentium FDIV bug (1994): 10−9 probability of occurring (Intel), maximum error
less than 10−5 (but probability of that < 10−11).

[image by Dusko Koncaliev]

Stuart Anderson Specification-Based Testing 1 c©2011



10

Systematic vs Random Testing

• Spaces are very large e.g. a system with 2 32 bit integers as inputs has 264
possible test cases (i.e. approx 1020).

• Relative to this number of potential tests, the number of tests we can apply is
always tiny.

• Random sampling means we can automate and apply a very large number
of tests but even then the coverage will remain very small (particularly for
complex problems).

• For example, in the case of buffer overrun failure, the likelihood of adding a
very long sequence of elements is very small (why?)

• So faults with small profiles and the size of input spaces force a hybrid where we
must consider some systematic testing – possibly reinforced with randomised
testing.

Stuart Anderson Specification-Based Testing 1 c©2011



11

A Systematic Approach

1. Analyse specification:
– Identify ITFs.

2. Partition categories:
– Significant cases for each parameter

3. Determine constraints:
– Reduce size of test space.

4. Write and process test specification.
– Produce test frames.
– May need to return to categories and
constraints.

5. Create test cases.
6. Execute test cases.
7. Evaluate results.

[Textbook, P&Y p. 169: Figure 10.3]

Stuart Anderson Specification-Based Testing 1 c©2011



A Systematic Approach 12

Functional Specifications

• This can be some kind of formal specification that claims to be comprehensive.

• Often it is much more informal comprising a short English description of the
inputs and their relationship with the outputs.

• For some classes of system the specification is hard to provide (e.g. a GUI,
since many of the important properties relate to hard to formalise issues like
usability).

Stuart Anderson Specification-Based Testing 1 c©2011



A Systematic Approach 13

Independently Testable Features

• Here we slice the specification into features (that may spread across many
code modules).

• Each feature should be independent of the other, i.e. we can concentrate on
testing one at a time.

• The design of the code will make this easier or more difficult depending on
how much attention has been given to testability in the systems design.

(sometimes muddled terminology: same as Independently Testable Function)

Stuart Anderson Specification-Based Testing 1 c©2011



A Systematic Approach 14

Modelling or Choice of Representative Values

• We consider model-based testing in a later lecture.

• For each of the inputs we consider classes of values that will all generate similar
behaviour.

• This will result in a very large number of potential classes of input for non-trivial
programs.

• We then identify constraints that disallow certain combinations of classes. The
goal is to reduce the number of potential test cases by eliminating combinations
that do not make sense.

Stuart Anderson Specification-Based Testing 1 c©2011



A Systematic Approach 15

Test Case Specifications and Test Cases

• From the partitions we can generate test case specifications.

• An important issue is identifying the expected output for a given input, this is
also a good way of checking the specification defines a homogeneous group of
test cases.

• These define a property that identifies a particular test case as belonging to
that specification.

• There may be very many test case specifications (need for management). It
may not be possible fully to automate the process of checking a test case
matches a specification.

• It may not be possible fully to automate the process of running a test case on
the system: Is the answer correct? Is the environment set up properly?

Stuart Anderson Specification-Based Testing 1 c©2011



16

An Example

• Command: find

• Syntax: find <pattern> <filename>

Function: The find command is used to locate one or more instances of the
given pattern in the named file. All matching lines in the named file are written
to standard output. A line containing a pattern is written out exactly once
regardless of the number of times the pattern occurs in the line.

The pattern is any sequence of characters whose length does not exceed the
maximum length of a line in the file. To include a blank in the pattern, the
entire pattern must be enclosed in quotes (“”). To include a quotation mark
in the pattern, two quotes in a row ““ must be used.

Observation: origin is simplification of MS-DOS find command.

Stuart Anderson Specification-Based Testing 1 c©2011



1/2 17

Aside: system(), exec(), java.lang.Runtime.exec()

• The C library call system() takes a string and invokes a shell with it
(/bin/sh c <string>). This means that the shell will break the string up
into a command and its arguments, and interpret it in a shell environment –
quoting, redirection, pipes, etc.

• C exec() takes a list of words; the first is the path to the executable, and
the rest are the arguments (including the 0th argument, which replaces the
executables name) — No interpretation done; No redirection.

• Javas exec() on a single string uses Javas StringTokenizer to break the
string up into words (purely on whitespace, so no quoting) — No redirection,
even though it looks like system().

• Javas exec() on a string array works like C exec(), but with path and arg0
being the same thing — No interpretation done; No redirection.

Stuart Anderson Specification-Based Testing 1 c©2011



2/2 18

Aside: system(), exec(), java.lang.Runtime.exec()

• So, system(‘‘echo ‘hi there’ foo > bar’’) in C would give the string
to sh, which would almost certainly break the string up into {“echo”, “hi
there”, “foo”, “>”, “bar”}, and then run the command “echo”, “hi there”’,
“foo” with its output sent to the file “bar”.

• While exec(‘‘echo ‘hi there’ foo > bar’’) in Java would break the
string up into {“echo”, “‘hi”, “there”’, “foo”, “>”, “bar”} (note the single
quotes are still there), and simply run the command {“echo”, “‘hi”, “there”’,
“foo”, “>”, “bar”}, with no output redirection.

• Yet another example of how environment can matter, and how it is a bad idea
to conflate the execution environment with the program being executed.

Stuart Anderson Specification-Based Testing 1 c©2011



19

Identifying Independently Testable Features

• The specification is small so we might just identify a single ITF, that the
collection of lines resulting from a “find” all contain the pattern and those
lines that are not in that collection do not contain the pattern.

• We might consider the identification of various error conditions as ITFs e.g.
problems with the file or filename, and malformed patterns. Each of these is
to, to some extent, an ITF because the functionality should be independent.

• So our ITFs could be:
1. Correctly identifies malformed patterns on the input.
2. Correctly identifies malformed filenames and other file related issues.
3. Correctly identifies exactly the lines in the file that match the pattern. This

might decompose (in some more detailed analysis) into (a) identifies pattern
within a line (b) identifies all lines.

Stuart Anderson Specification-Based Testing 1 c©2011



20

Identifying Categories (for the matching ITF)

• Parameter: pattern
– Pattern size
– Quoting
– Embedded blanks
– Embedded quotes

• Parameter: filename
– Assume it is valid for this ITF

• Environment: file corresponding to filename
– Number of occurrence of pattern in file
– Number of occurrence on a target line

• For the malformed filename ITF we might have fewer categories e.g. File name
in the parameters section and name/file correspondence in the Environments
section.

Stuart Anderson Specification-Based Testing 1 c©2011



21

Partitioning categories (for matching)

• Parameter: pattern
– Pattern size: empty, single, multiple, too long
– Quoting: pattern quoted, pattern not quoted
– Embedded blanks: none, one, several
– Embedded quotes: none, one, several

• Parameter: filename
– Valid filename

• Environment: file corresponding to filename
– Number of occurrence of pattern in file: none, one, several
– Number of occurrence on a target line: (none,) one, several

• With no restrictions this is: 4 ∗ 2 ∗ 3 ∗ 3 ∗ 3 ∗ 2 = 432 different test frames.
• We use constraints to help reduce this number

Stuart Anderson Specification-Based Testing 1 c©2011



22

Identify Constraints

• Parameters:
– Pattern size:

∗ empty, [property Empty]
∗ single, [property nonEmpty]
∗ multiple, [property nonEmpty]
∗ too long, [property nonEmpty]

– Quoting:
∗ pattern quoted, [property Quoted]
∗ pattern not quoted, [if nonEmpty]

– Embedded blanks:
∗ none, [if nonEmpty]
∗ one, [if nonEmpty and Quoted]
∗ several [if nonEmpty and Quoted]

– Embedded quotes: ...
• Can lead to a significant reduction in the number of categories

Stuart Anderson Specification-Based Testing 1 c©2011



23

Generate Test Case Specifications

• The specification describes a collection of test partitions

• The number is significantly smaller than the simple product would suggest.

• E.g. we only need to consider embedded blanks where we have quoted strings.

• E.g. a quoted multiple character pattern with one embedded blank, several
embedded quotes applied to a file with several occurrences of the pattern at
most once per line.

Stuart Anderson Specification-Based Testing 1 c©2011



24

Generating and Running Tests

• We will consider this in more detail in the next lecture.

• There are still issues in checking a test matches some specification.

• The test plus the system specification should determine valid outputs (if the
test is intended to create valid output) but this can be an issue.

• Much research has gone into creating automated oracles that check the output
of a test for validity.

Difficult, e.g. I worked on a ∼ 3 person-year project of about 140, 000 loc
which produced over 5, 000 lines of output from nightly tests. The tests
succeeded or failed overall in a binary fashion, but there is a lot of grey
area, such as checking compiler flags and warnings across platforms, etc.

Stuart Anderson Specification-Based Testing 1 c©2011



Specification-based Testing 25

Example: “cat”
Here we consider testing the UNIX “cat” command using the category-partition
method we have been looking at.

Stuart Anderson Specification-Based Testing 1 c©2011



cat man page 26

Functional Specification
NAME cat - concatenate files and print on the standard output

SYNOPSIS cat [OPTION] [FILE]...

DESCRIPTION Concatenate FILE(s), or standard input, to standard output.

-A, --show-all equivalent to -vET

-b, --number-nonblank number nonblank output lines

-e equivalent to -vE

-E, --show-ends display $ at end of each line

-n, --number number all output lines

-s, --squeeze-blank never more than one single blank line

-t equivalent to -vT

-T, --show-tabs display TAB characters as ^I

-u (ignored)

-v, --show-nonprinting use ^ and M- notation, except for LFD and TAB

--help display this help and exit

--version output version information and exit

With no FILE, or when FILE is -, read standard input.

EXAMPLES

cat f - g Output f’s contents, then standard input, then g’s contents.

cat Copy standard input to standard output.

Stuart Anderson Specification-Based Testing 1 c©2011



cat example 27

Identifying Independently Testable Features

• Here we might think that there are three ITFs associated with cat:
1. Error checking for the option string – checking the syntax is OK and for

consistent combinations of options.
2. Error checking the syntax of filenames.
3. That cat functions correctly given a legal option string and a syntactically

correct sequence of filenames.

• Here we will consider generating categories and partitions of those categories
for the third ITF we have identified.

• For each ITF we begin by identifying:
– Parameters relevant to the feature.
– Other elements of the execution environment that the ITF is dependent on.

Typical elements are: databases, the file system, hardware devices, ...

Stuart Anderson Specification-Based Testing 1 c©2011



cat example 28

Identifying parameters relevant to the ITF

• Parameters:
– Option string:
– Filename sequence:

• Environment:
– The file system (this is a mapping from valid filenames to file contents)

• The parameters relevant to an ITF are those that cause a change in behaviour
in the Feature when they are changed.

• The next stage is to identify categories – these are elementary characteristics
of the parameters which are either found explicitly in the specification or they
are implicit – i.e. they arise from the experience of the tester.

Stuart Anderson Specification-Based Testing 1 c©2011



cat example 29

Identifying Categories

• Parameters:

– Option string:
∗ Option string length

– Filename sequence:

• Environment:

– The file system (this is a mapping from valid filenames to file contents):
– Standard input:

Stuart Anderson Specification-Based Testing 1 c©2011



30

Summary

• We have seen how a systematic approach to testing can be based on the
specification.

• We have also seen how this can make the specifications inadequacies apparent.

• We have looked at the stages of that approach:
1. Identifying testable features
2. Identify categories
3. Identifying constraints
4. Deriving test case specifications
5. Deriving test cases that match the specifications
6. Executing the cases.

• This approach is important to most test situations but it becomes more difficult
to apply the richer the environment becomes.

Stuart Anderson Specification-Based Testing 1 c©2011



31

Readings
Required Readings

• Textbook (Pezzè and Young): Chapter 10, Functional Testing

• T. J. Ostrand and M. J. Balcer. 1988. The category-partition method for
specifying and generating fuctional tests. Commun. ACM 31, 6 (June 1988),
676-686. http://dx.doi.org/10.1145/62959.62964

Stuart Anderson Specification-Based Testing 1 c©2011

http://dx.doi.org/10.1145/62959.62964

