
Software Testing: Overview

Stuart Anderson

Stuart Anderson Software Testing: Overview c©2011



Title Slide

Acknowledgements:

Massimo Felici, Conrad Hughes



1

Course Administration: Books

• Main text: Pezzè & Young, Software Testing and Analysis: Process,
Principles and Techniques, Wiley, 2007.

• Paul Ammann and Jeff Offutt, Introduction to Software Testing, Cambridge
University Press, Cambridge, UK, ISBN 0-52188-038-1, 2008.

• G.J. Myers, The Art of Software Testing, Second Edition, John Wiley & Sons,
New York, 1976.

• B. Marick, The Craft of Software Testing, Prentice Hall, 1995
• C Kaner, J. Bach, B. Pettichord, Lessons Learned in Software Testing, Wiley,

2001.

Material covered via readings, presentations, web resources and practical
experience.

Stuart Anderson Software Testing: Overview c©2011



2

Course Administration

• Course Web page: http://www.inf.ed.ac.uk/teaching/courses/st/

• Useful: http://www.cs.uoregon.edu/~michal/book/index.html

• Useful: http://www.testingeducation.org

Stuart Anderson Software Testing: Overview c©2011

http://www.inf.ed.ac.uk/teaching/courses/st/
http://www.cs.uoregon.edu/~michal/book/index.html
http://www.testingeducation.org


3

Grading on the Course

• One practicals worth 25% of the final mark — Practicals will involve
actually testing some software systems

• Deadline: Thursday, 1600, 1 March 2012 (week 7)

• In week 8 each group will organise a 30 minute feedback session to demonstrate
their practical and get feedback.

• One examination worth 75%. This will be an open-book examination.

• Quizzes and tutorials — not assessed but doing them will make it much
easier to do the examination and practicals

Stuart Anderson Software Testing: Overview c©2011



4

Tutorials

• There are four tutorials available on the course. Each one is owned by a
different tutor.

• Each tutorial relates to a different section of the practical.

• To access the tutorial you must have evidence of preparation for the tutorial
(e.g. your group has completed a small test or has some documentation
available).

• When you are ready to do a tutorial you contact the tutor to arrange a time
for a tutorial session.

• Each tutorial session will have two groups participating.

Stuart Anderson Software Testing: Overview c©2011



5

Famous persons quote time!
“...testing can be a very effective way to show the presence of bugs, but is
hopelessly inadequate for showing their absence. The only effective way to
raise the confidence level of a program significantly is to give a convincing
proof of its correctness.”

– Edsger Dijkstra

http://www.cs.utexas.edu/users/EWD/transcriptions/EWD03xx/EWD340.html

Stuart Anderson Software Testing: Overview c©2011

http://www.cs.utexas.edu/users/EWD/transcriptions/EWD03xx/EWD340.html


6

So really, why do we test?

• To find faults
– Glenford Myers, The Art of Software Testing

• To provide confidence
– of reliability
– of (probable) correctness
– of detection (therefore absence) of particular faults

• Other issues include:
– Performance of systems (i.e. use of resources like time, space,

bandwidth,...).
– “...ilities” can be the subject of test e.g. usability, learnability, reliability,

availability,
• Kaner and Bach: a technical investigation carried out to expose quality-related

information on the product under test.

Stuart Anderson Software Testing: Overview c©2011



7

Testing Theory

• But Dijkstra viewed programs as primarily abstract mathematical objects —
for the tester they are engineered artifacts — the mathematics informs the
engineering — but that is not the whole story (e.g., integers a common trap
for the unwary).

• Plenty of negative results
– Nothing guarantees correctness
– Statistical confidence is prohibitively expensive
– Being systematic may not improve fault detection — as compared to simple

random testing
– Rates of fault detection dont correlate easily with measures of system

reliability.
• Most problems to do with the “correctness” of programs are formally

undecidable (e.g., program equivalence).

Stuart Anderson Software Testing: Overview c©2011



8

What Information Do We Have Available?

• Specifications (formal or informal)
– To check an output is correct for given inputs
– for Selection, Generation, Adequacy of test sets

• Designs/Architecture
– Useful source of abstractions
– We can design for testability
– Architectures often strive to separate concerns

• Code
– for Selection, Generation, Adequacy
– Code is not always available
– Focus on fault/defect finding can waste effort

• Usage (historical or models) — e.g., in telecom traffic
• Organisation experience — if the organisation gathers information

Stuart Anderson Software Testing: Overview c©2011



9

Testing for Reliability

• Reliability is statistical, and requires a statistically valid sampling scheme

• Programs are complex human artifacts with few useful statistical properties

• In some cases the environment (usage) of the program has useful statistical
properties

– Usage profiles can be obtained for relatively stable, pre-existing systems
(telephones), or systems with thoroughly modelled environments (avionics)

Stuart Anderson Software Testing: Overview c©2011



10

A Hard Case: Certifying Ultra-High Reliability

• Some systems are required to demonstrate very high reliability (e.g., an aircraft
should only fail completely once in 1011 hours of flying).

• So aircraft components have to be pretty reliable (but think about how many
single points of failure a car has).

• How can we show that the avionics in a fly-by-wire aircraft will only fail once
in 109 hours of flying.

• Butler & Finelli estimate
for 10−9 per 10 hour mission
requires: 1010 hours testing with 1 computer
or: 106 hours (114 years) testing with 10,000 computers
[also Littlewood and Strigini]

Stuart Anderson Software Testing: Overview c©2011



Slide 10: A Hard Case: Certifying Ultra-High Reliability

Suggested Readings

• Butler, R.W.; Finelli, G.B., The infeasibility of quantifying the reliability of
life-critical real-time software, IEEE Transactions on Software Engineering,
vol.19, no.1, pp.3-12, Jan 1993.

DOI: http://dx.doi.org/10.1109/32.210303

• Bev Littlewood and Lorenzo Strigini. 1993. Validation of ultrahigh
dependability for software-based systems. Commun. ACM 36, 11 (November
1993), 69-80.

DOI: http://dx.doi.org/10.1145/163359.163373

http://dx.doi.org/10.1109/32.210303
http://dx.doi.org/10.1145/163359.163373


11

Standard Testing Activities

Phase 1: Modelling the environment of the software
• What is the right abstraction for the interface?

Phase 2: Selecting test scenarios
• How shall we select test cases?

– Selection; Generation
Phase 3: Running and evaluating test scenarios

• Did this test execution succeed or fail?
– Oracles

• What do we know when we have finished?
– Assessment

Phase 4: Measuring testing progress
• How do we know when we have tested enough?

– Adequacy

Stuart Anderson Software Testing: Overview c©2011



12

Phase 1: Modelling the Environment

• Testers identify and simulate interfaces that a software system uses

• Common interfaces include: Human interfaces, Software interfaces (aka
APIs), File system interfaces, Communication interfaces

• Identify interactions that are beyond the control of the system, e.g.:

– Hardware being powered off and on unexpectedly
– Files being corrupted by other systems/users
– Contention between users/systems

• Issues in building abstractions include: choosing representative values,
combinations of inputs, sequence (finite state machine models are often used)

Stuart Anderson Software Testing: Overview c©2011



13

Phase 1: Partition the Input Space
Basic idea: Divide program input space into (what we think might be) equivalence
classes

• Use representatives of the “equivalence classes” to model the domain
• Worry about the boundaries because we do not know if we have the right

partition.

Stuart Anderson Software Testing: Overview c©2011



14

Phase 1: Specification-Based Partition Testing

• Divide the program input space according to cases in the specification
– May emphasise boundary cases
– Combining domains can create a very large number of potential cases
– Abstractions can lose dependencies between inputs

• Testing could be based on systematically “covering” the categories
– The space is very large and we probably still need to select a subset.
– May be driven by scripting tools or input generators
– Example: Category-Partition testing [Ostrand]

• Many systems do not have particularly good specifications.
• Some development approaches use tests as a means of specification.

Stuart Anderson Software Testing: Overview c©2011



15

Quiz: Testing Triangles (G. Myers)

• You are asked to test a method Triangle.scalene(int, int, int) that returns a
Boolean value.

• Triangle.scalene(p, q, r) is true when p, q and r are the lengths of the sides
of a scalene triangle.

• Scalene as opposed to equilateral or isosceles

• Construct an adequate test set for such a method.

Stuart Anderson Software Testing: Overview c©2011



Slide 15: Rate Yourself

1. A valid scalene triangle (e.g. 4,3,2)
2. A valid equilateral triangle.
3. A valid isosceles triangle (e.g. 2,4,4 not 4,2,2)
4. Permuted isosceles inputs (e.g. 2,4,4; 4,2,4; 4,4,2)
5. Zero side length?
6. Negative side lengths?
7. Inputs such that p = q + r
8. Permutations of test cases 7.
9. Inputs such that p > q + r

10. Permutations of test cases 9.
11. All zero?
12. Did you specify the expected result in all cases?
13. If we had an interface to the function there would be many more.



16

Quiz: Does having the code help?
public class Triangle {

public boolean scalene(int p, int q, int r) {

int tmp;

if(q>p) { tmp = p; p = q; q = tmp; }

if(r>p) { tmp = p; p = r; r = tmp; }

return ((r>0) && (q>0) && (p>0) &&

(p<(q+r))&& ((q>r) || (r>q)));

}

}

Note: this code contains at least one bug!

Stuart Anderson Software Testing: Overview c©2011



17

Quiz: Summary

• The code is less than 10 lines long – we seem to need at least the same number
of tests to check it.

• Many modern systems are multi-million line systems.

• Daunting task to work out how to test such systems.

• Part of the approach is to change the way systems are built.

Stuart Anderson Software Testing: Overview c©2011



18

Doomed software project time!
“Jim Allchin walked into Bill Gatess office to deliver a bombshell about the
next generation of Microsoft Windows. ”Its not going to work,” he told the
Microsoft chairman. The new version, code-named Longhorn, was so complex
its writers would never be able to make it run properly. Worse: Longhorn
was irredeemable because Microsoft engineers were building it just as they had
always built software. Throughout its history, Microsoft had let thousands of
programmers each produce their own piece of computer code, then stitched it
together into one sprawling program. Now, Mr. Allchin argued, the jig was
up. Microsoft needed to start over.”

– Wall Street Journal, 23 September 2005

Stuart Anderson Software Testing: Overview c©2011



19

Phase 2: Selecting Tests
What criteria can we use to cut down the number of tests?

• Common criteria are coverage criteria: We have executed all statements;
We have executed all branches; We have executed all possible paths in the
program; We have covered all possible data flows.

• We might also try to evaluate the effectiveness of test cases by seeding errors
in the code and seeing how well a test set does in finding the errors.

• We might also consider statistical measures, e.g., that we have a statistically
valid sample of the possible inputs (but here we need a good idea of the
distribution of inputs).

Stuart Anderson Software Testing: Overview c©2011



20

Phase 2: Test Adequacy

• Ideally: adequate testing ensures some property (proof by cases)

– It is very hard to establish non-trivial properties using these methods (unless
the system is clearly finite)

– Origins in [Goodenough and Gerhart], [Weyuker and Ostrand]

• Practically: “adequacy” criteria are safety measures designed to identify holes
in the test set

– If we have not done this kind of test some instances of this kind of test
should be added to the test set.

Stuart Anderson Software Testing: Overview c©2011



21

Phase 2: Systematic Testing

• Systematic (non-random) testing is aimed at program improvement

– Finding faults not trying to predict the statistical behaviour of the program
– Obtaining valid samples and maximising fault detection require different

approaches; it is unlikely that one kind of testing will be satisfactory for
both

• “Adequacy” criteria mostly negative: indications of important omissions

– Positive criteria (assurance) are no easier than program proofs

Stuart Anderson Software Testing: Overview c©2011



22

Phase 2: Structural Coverage Testing

• (In)adequacy criteria

– If significant parts of program structure are not tested, testing is surely
inadequate

• Control flow coverage criteria

– Statement (node, basic block) coverage
– Branch (edge) and condition coverage
– Data flow (syntactic dependency) coverage
– Various control-flow criteria

• Attempted compromise between the impossible and the inadequate

Stuart Anderson Software Testing: Overview c©2011



23

Phase 2: Basic Structural Criteria

• Edge ac is required by all-edges but
not by all-nodes coverage

• Typical loop coverage criterion would
require zero iterations (cdf), one
iteration (cdedf), and multiple
iterations (cdededed...df)

Stuart Anderson Software Testing: Overview c©2011



24

Phase 2: Data Flow Coverage Criteria

• Rationale: An untested def-use
association could hide an erroneous
computation

• 2 reaching definitions (one is from
self)

• 2 reaching definitions for x, and 2
reaching definitions for y

Stuart Anderson Software Testing: Overview c©2011



25

Phase 2: Structural Coverage in Practice

• Statement and sometimes edge or condition coverage is used in practice

– Simple lower bounds on adequate testing; may even be harmful if
inappropriately used for test selection — too much focus on structure
diverts effort from bugs that worry users

• Additional control flow heuristics sometimes used

– Loops (never, once, many), combinations of conditions
– Potential linkage to static flow analysis literature

• Slicing and abstract interpretation approaches allow the checking of basic
properties on large bodies of code (e.g., Airbus A380 avionics ∼3-4 Mloc;
modern luxury car ∼100Mloc)

Stuart Anderson Software Testing: Overview c©2011



26

Phase 2: Fault-Based Testing

• Given a fault model

– hypothesised set of deviations from correct program
– typically, simple syntactic mutations; relies on coupling of simple faults with

complex faults

• Coverage criterion: Test set should be adequate to reveal (all, or x%) faults
generated by the model

– similar to hardware test coverage

Stuart Anderson Software Testing: Overview c©2011



27

Phase 2: Fault Models

• Fault models are key to semiconductor testing

– Test vectors graded by coverage of accepted model of faults (e.g., “stuck-at”
faults)

• What are fault models for software?

– What would a fault model look like?
– How general would it be? Across application domains? Across organisations?

Across time?

• Defect tracking is a start — gathering collections of common faults in an
organisation — rigorous process — links to CMMI (Capability Maturity Model
Integration) and optimising organisations.

Stuart Anderson Software Testing: Overview c©2011



Mutation Testing Example 28

Phase 2: Selection vs. Adequacy

• Red fish = real program faults (unknown population)
• Blue fish = seeded faults (e.g., mutations) or representative behaviour (known

population)
• Adequacy: count blue fish caught, estimate red fish
• Misuse for selection: use special bait to catch blue fish

Stuart Anderson Software Testing: Overview c©2011



29

Phase 2: Test Selection — Standard Advise

• Specification coverage is good for selection as well as adequacy

– applicable to informal as well as formal specs

• Fault-based tests

– usually ad hoc, sometimes from check-lists

• Program coverage last

– to suggest uncovered cases, not just to achieve a coverage criterion

Stuart Anderson Software Testing: Overview c©2011



30

Phase 2: The Bottom Line — The Budget
Coverage Criterion

• A common answer to ‘When is testing finished?’
– When the money is used up
– When the deadline is reached

• This is sometimes a rational approach!
– Implication 1: Test selection is more important than stopping criteria per

se.
– Implication 2: Practical comparison of approaches must consider the cost

of test case selection
• Example: testing of SAFEBUS (communications bus for Boeing aircraft) —

started out with a pile of money and stopped when they ran out (could have
more money if it was still flakey).

Stuart Anderson Software Testing: Overview c©2011



31

Phase 3: Running and Evaluating Tests

• The magnitude of the task is a problem than can require tools to help —
automated testing means we can do more testing but in some circumstances
it is hard (e.g. GUIs).

• Is the answer right? Usually called the Oracle problem — often the oracle is
human.

• Two approaches to improving evaluation: better specification to help structure
testing; embedded code to evaluate structural aspects of testing (e.g. providing
additional interfaces to normally hidden structure).

• Through life testing: most programs change (some are required not to change
by law) — regression testing is a way of ensuring the next version is a least as
good as the previous one.

• Reproducing errors is difficult — attempt to record sequence of events and
replay — issues about replicating the environment.

Stuart Anderson Software Testing: Overview c©2011



32

Phase 3: The Importance of Oracles

• Much testing research has concentrated on adequacy, and ignored oracles

• Much testing practice has relied on the “eyeball oracle”

– Expensive, especially for regression testing — makes large numbers of tests
unfeasible

– Not dependable

• Automated oracles are essential to cost-effective testing

Stuart Anderson Software Testing: Overview c©2011



33

Phase 3: Sources of Oracles

• Specifications

– sufficiently formal (e.g., SCR tables)
– but possibly incomplete (e.g., assertions in embedded assertion languages

such as Anna, ADL, APP, Nana)

• Design, models

– treated as specifications, as in protocol conformance testing

• Prior runs (capture/replay)

– especially important for regression testing and GUIs; hard problem is
parameterization

Stuart Anderson Software Testing: Overview c©2011



34

Phase 3: What can be automated?

• Oracles

– assertions; replay; from some specifications

• Selection (Generation)

– scripting; specification-driven; replay variations
– selective regression test

• Coverage

– statement, branch, dependence

• Management

Stuart Anderson Software Testing: Overview c©2011



35

Phase 3: Design for Test — Three Principles

1. Observability

• Providing the right interfaces to observe the behavior of an individual unit
or subsystem

2. Controllability

• Providing interfaces to force behaviours of interest

3. Partitioning

• Separating control and observation of one component from details of others

Stuart Anderson Software Testing: Overview c©2011



36

Phase 4: Measuring Progress (Are we done yet?)

• Structural:

– Have I tested for common programming errors?
– Have I exercised all of the source code?
– Have I forced all the internal data to be initialised and used?
– Have I found all seeded errors?

• Functional:

– Have I thought through the ways in which the software can fail and selected
tests that show it doesnt?

– Have I applied all the inputs?
– Have I completely explored the state space of the software?
– Have I run all the scenarios that I expect a user to execute?

Stuart Anderson Software Testing: Overview c©2011



37

Summary

• We have outlined the main testing activities:

– Modelling the environment
– Test Selection
– Test execution and assessment
– Measuring progress

• These are features of all testing activity.

• Different application areas require different approaches

• Different development processes might reorganise the way we put effort into
test but the amount of test remains fairly constant for a required level of
product quality.

Stuart Anderson Software Testing: Overview c©2011



38

Readings
Required Readings

• Textbook (Pezzè and Young): Chapter 1, Software Test and Analysis in a
Nutshell

• Textbook (Pezzè and Young): Chapter 2, A Framework for Test and
Analysis

• Whittaker, J.A., What is software testing? And why is it so hard?, IEEE
Software, vol.17, no.1, pp.70-79, Jan/Feb 2000.

DOI: http://dx.doi.org/10.1109/52.819971

Stuart Anderson Software Testing: Overview c©2011

http://dx.doi.org/10.1109/52.819971


Slide 38: Acknowledgements

• Michal Youngs overview of software testing.

• James A. Whittakers What is Software Testing...

• Brad Meyers Art of Software testing for the scalene triangle example


