
Revision: category-partition method — solutions
(2007–8 exam, question 1)

Conrad Hughes

March 10, 2010

1. Black-box (functional) testing, because we have no access to code. Access to source
code would allow white-box (structural) testing. Risky because focussing on structure
might cause you to lose track of intended/missing functionality, but good because by
applying code coverage criteria you get better indications that the implementation has
been fully exercised.

2. Category-partition method applied:

ITF: – That we get the correct fragments out when the expression is in s.

– [That we get [s] when the expression isn’t in s.]

– [That we get an appropriate exception when regex is null.]

Parameters: – s string to be split

– regex regular expression

– limit max #fragments

Environment: JRE version

Partitions: s: ∗ empty

∗ nonempty

· doesn’t contain regex

· equal to regex

· contains regex

regex: ∗ null

∗ empty [spec unclear]

∗ nonempty

limit: ∗ negative

∗ zero

∗ positive

· less than #matches

· equal to #matches

· greater than #matches

Env: ∗ pre 1.4

∗ 1.4 or later

Constraints: – 4 × 3 × 5 × 2 = 120 combinations

– s empty ⇒ regex/limit irrelevant

– s doesn’t contain regex: limit values irrelevant

– Pre 1.4 JRE: no testing

– regex null ⇒ s/limit irrelevant

– post-constraint combos:

∗ s empty × anything × anything → 1 case

∗ s without regex × anything × anything → 1

∗ s=regex × regex × (1|2) → 2

∗ s with regex × empty regex × (−ve| < | = | >) → 4

∗ s with regex × some regex at end × 0 → 1

∗ anything × null × anything → 1

∗ So, about 10 cases in all.

Value classes: s: “hello”

regex: “”, “a”, “l”, “hello”

limit: -1, 0, 1, 4

Specification: – “”.(“a”,0) → [“”]

– “hello”.(“a”,0) → [“hello”]

– “hello”.(“”,-1) → [“”, “h”, “e”, “l”, “l”, “o”, “”]

– “hello”.(“hello”,0) → []

– “hello”.(“hello”,-1) → [“”, “”]

– “hello”.(“l”,1) → [“hello”]

– “hello”.(“l”,3) → [“he”, “”, “o”]

– “hello”.(“l”,4) → [“he”, “”, “o”]

– “hello”.(null,4) → exception

• Possible sources of ambiguity:

– Behaviour when regex is “”

– Behaviour when regex is null

3. Two techniques are constraints (regex being null should cause an error no matter what
the other inputs are, so only one test is necessary here instead of all possible combina-
tions of the other inputs), and combinatorial reduction — where, for example, instead
of covering all possible combinations of three inputs (N3), one might cover all possible
pairwise combinations (N2) in the hope that all errors will be triggered solely by one in-
put or by pairwise interactions between two inputs, rather than pathological interactions
among all inputs. Models can also be used to reduce the number of tests.

