
1

Software Testing: Lecture 14 15 March 2010

Higher-order Testing

Conrad Hughes
School of Informatics

Slides thanks to Stuart Anderson

5 March 2010 2Software Testing: Lecture 14

The V-Model and Defining Higher Order Tests

Coding

Module interface spec

System design

External spec

Objectives

Requirements

Module test

Integration test

Function test

System test

Acceptance test

5 March 2010 3Software Testing: Lecture 14

V-Model Stages

Meyers’ version of the V-model has a number of stages that relate to
distinct testing phases all of which are useful:
1. Requirements – seen as inherently informal for Meyers so the acceptance

test must engage with the user in agreeing the requirements have been
met.

2. Objectives are more tightly specified and quantitative issues of costs,
sizes, speeds together with tradeoffs have been established. The system
test should be directed to see that objectives have been met (objectives
have clear criteria to decide whether they have been met).

3. The external specification is a black-box specification of the functionality
of the system and thus the function test is directed to checking the
implementation of the specified function.

4. System design provides a structure that can be tested by Integration
testing (inherently dependent of the structure of the system).

5. Module interface specifications are the basis for rigorous unit test (both
black-box and white-box).

5 March 2010 4Software Testing: Lecture 14

Test Objectives

Given there are many different types of test there is the
possibility of considerable redundancy across tests and the
potential to waste effort.
One way of managing this is to set a test objective for each
level of test. Ideally an objective should be dealt with at the
lowest level testing.
For example we might take the following objectives:
– Module test aims to find discrepancies between a module’s

behaviour and its interface specification.
– Function test aims to demonstrate that the program does not

conform to its external specification.
– System test aims to show the product is inconsistent with the

original objectives (e.g. that some quantitative aspect of the
system is not delivered by the product).

5 March 2010 5Software Testing: Lecture 14

Critique of the V-Model

The V-model is often criticised because it provides a very
highly constrained model of the interaction of test and
development and of the sequencing of testing activities.
However, the model is useful in identifying different kinds of
test that need orchestrating in any development process.
More iterative or agile processes will have all these types of
test in one iteration that delivers new functionality.
For some of the software lifecycles it may be that there is no
independent notion of e.g. requirements and so that particular
type of testing will be de-emphasised in that approach.
Increasingly, as products become longer-lived, there is the
issue of how to use test to evolve fielded products and how to
use field data to improve product quality (e.g. beta testing
exploits the ability to use a range of test sites to test
systems).

5 March 2010 6Software Testing: Lecture 14

Translating the V-Model to Other Processes

If we consider an XP approach to development and consider the
V-model classification of testing we can see that:
– Module, Integration, and Function test are carried out against

module specifications and external specifications of the system.
– System and acceptance testing is moved more to the user who may

be the embedded customer along with the team. The use of users
as beta-testers helps identify real requirements issues as soon as
significant functionality is available.

– Regression testing is linked to refactoring as a means of ensuring
no change in the delivered behaviour.

– It may be that the system has no well-documented requirements
and so it is impossible to carry out a system test. It may also be
that requirements are acquired iteratively as the system evolves.

2

5 March 2010 7Software Testing: Lecture 14

Module/Unit/Integration Testing

It is important that this activity is appropriately targeted to
avoid duplication of effort from other high-level test activity.
The focus here should be on verifying that the behaviour of the
components satisfies the interface specifications.
In XP it may be that the collection of tests serve as a
specification for the system.

5 March 2010 8Software Testing: Lecture 14

Functional Testing

Functional testing is aimed at discovering discrepancies
between the behaviour of the system and its external
specification.
An external specification is a precise description of the
required behaviour form a users point of view.
Typically systems are seen as delivering some key functionality
and functional testing is directed to uncovering failures to
provide the functions of the system.
Functional testing techniques are black-box and use the
approaches we have discussed earlier in the course e.g.
category partition, common error lists, boundary-value testing.

5 March 2010 9Software Testing: Lecture 14

System Testing 1

System testing is dependent on their being a quantified set of
objectives for the system – these may be derived iteratively
but we need to capture them to allow effective systems testing.
Focus of system testing is to find discrepancies in the
translation of the objectives into the external specifications.
So the system test should be related to the objectives of the
system – these should be captured in user-oriented term in the
user documentations so we use the user document to help
design he system tests.
The problem in creating system tests is that there is no
exhaustive list of the kinds of test that might be necessary to
test the objectives of a system.
Meyers provides a list of 15 different kinds of test that might
be involved in testing the objectives of a system – but this is
not exhaustive – it may be necessary to add some other testing
approaches depending on the objectives

5 March 2010 10Software Testing: Lecture 14

System Testing 2

Facility Testing: this is checking that user accessible facilities (or
functions) are implemented. This is an all-or-nothing test – either the
system attempts to provide a facility or not – this might take the form
of a visual inspection of the system.
Volume Testing: objectives will usually have requirements on the volume
of objects that a system can handle. E.g. a simulator might have a
specification that it is capable of handling up to 100,000 logic gates or
a database system might have a lower bound on the number of records
handled.
Stress Testing: systems involving real-time constraints will almost
always have objective in terms of how rapidly they can deal with events
(e.g. 10,000 transactions per hour, the VISA payments system
supports more than 5000 card transactions per second – with very high
reliability). In addition many system have multiple inputs and stress
testing might investigate how well the system handles many input
parameters changing simultaneously.

5 March 2010 11Software Testing: Lecture 14

System Test 3

Usability Testing: often carried out with real usability testers
who can discover serious usability flaws even in well-
implemented systems. Typical issues include:
1. Appropriateness of interface to the user group
2. Meaningful interactions, warnings etc
3. Use of consistent styles, metaphors etc
4. Is redundancy/diversity of interfaces used where accuracy is

essential?
5. Is the interface too configurable?
6. Is it clear that the system is always live?
7. Is it easy to get the system to do what the user wants?

5 March 2010 12Software Testing: Lecture 14

System Test 4

Security Testing: The external specification will usually have
been derived from the objectives by developing a security
model that constrains the flow of information from one area of
the system to another. System testing should identify any
flaws in moving from objectives to a behavioural specification.
In addition the objectives may include a list of common threats
that we should demonstrate are dealt with in the external
specification.

• Performance Testing: many systems will have throughput
objectives. These may be express statistically in terms of
rates and likelihood of failure. The system should be
instrumented to allow these objectives to by subjected test
when the system is in the field.

• Storage Testing: systems will claim to run happily in a given
amount of storage – we should check this.

3

5 March 2010 13Software Testing: Lecture 14

System Test 5

• Configuration Testing: many systems are highly configurable (e.g. SAP
and Oracle). A good example of this is a multi-platform system where
considerable configuration effort might be required to get a system to
run on a particular platform

• Compatibility/Compliance Testing: Objectives will often include
compliance statements that the system is compliant with a standard –
this style of testing aims to cover a significant subset of the range of
different configurations.

• Installability Testing: Is the system easy to install correctly?
• Reliability Testing: is the mean time to failure long enough
• Recovery Testing: assessing the mean time to repair a fault is often a

critical objective of a system
• Serviceability Testing: how easy is it to upgrade the system?
• Documentation Testing: how well does the documentation match the

actual system behaviour
• Procedure Testing: many systems involve complex interactions between

computers and human procedures – are the procedures and the
computer system compatible?

5 March 2010 14Software Testing: Lecture 14

System Testing Process/Management

System testing should not be performed by the developers –
ideally it should be an independent organisation.
Seemingly independent objectives have dependencies and the
planning for system test has to take account of these
dependencies (in order to get better coverage).

5 March 2010 15Software Testing: Lecture 14

Acceptance Testing

Carried out by the customer on their premises.
Testing is carried out independent of the development
organisation.
The acceptance test marks the transition from development
before use to development in use.

5 March 2010 16Software Testing: Lecture 14

Installation Testing

Does the proposed software run on the proposed users
configuration?
Many vendors now offer to integrate systems offsite and bring
them to the users site.
Issues like versions of software, library versions, hardware,
networking all impact on the runnability of a system.
Installation testing should aim to characterise the
hardware/software combination that ate

5 March 2010 17Software Testing: Lecture 14

Test Planning and Control

Even for modest-sized systems, there is a considerable management
load in ensuring the tests are well-managed.
Plans should be realistic and should allow for the discovery and repair
of the most serious classes of error.
A good test plan should:
1. Have clear objectives for each phase of testing.
2. Have clear completion criteria for each stage of test.
3. Have a project plan with clear timings on activities and the dependency

between activities.
4. Testing responsibilities should be clearly allocated.
5. Large projects should systematically manage resources.
6. Appropriate hardware may need to be ordered/configured/secured.
7. Good tracking of bugs is essential as is the tracking of all testing activity.
8. Good debugging procedures.
9. The capacity to regression test quickly after a fault has been repaired.

5 March 2010 18Software Testing: Lecture 14

Test Completion Criteria

Bad criteria include:
– Stop when we run out of time.
– Stop when test cases fail to find errors.

One possible approach is to target a particular residual defect
density.
We have estimates of the effectiveness of bug finding for
different parts of the system and different approaches to bug
finding.
Providing a target RDD is a good way of structuring the
completion of particular stage in the system test.

4

5 March 2010 19Software Testing: Lecture 14

Summary

Higher-order testing is a complex business.
There is very little hard advice to give since most of the
approaches vary depending on the class of system.
Not all approaches to system testing are necessary for all
systems – deciding on a suitable collections of system tests can
be difficult.

