
1

Software Testing: Lecture 11 123 February 2010

Regression Testing

Conrad Hughes
School of Informatics

Slides thanks to Stuart Anderson

23 February 2010 2Software Testing: Lecture 11

Regression Testing

Regression testing is applied to code immediately after changes are
made.
The goal is to assure that the changes have not had unintended
consequences on the behaviour of the test object.
We can apply regression testing during development and in the field
after the system has been upgraded or maintained in some other way.
Good regression tests give us confidence that we can change the
object of test while maintaining its intended behaviour.
So, for example, we can change to a new version of some piece of
infrastructure in the environment, make changes to the system to take
account of that and then ensure the system behaves as it should.
Regression testing is an important way of monitoring the effects of
change.
There are many issues but the balance of confidence against cost is
critical.

23 February 2010 3Software Testing: Lecture 11

Why Use Regression Tests?

Good reasons:
– Bug fixes often break other things the developer isn’t

concentrating on.
– Sometimes bug fixes don’t fix the bug.
– Checking software still runs after making a change in the

infrastructure.
– Discovering faulty localisation.
– Errors in the build process (e.g. wrong parameters).
– Conforming to standards or regulators.

Bad reasons:
– Arguments in terms of replicability of results (i.e. scientific

analogy).
– Arguments in terms of quality in analogy with a production line (i.e.

a manufacturing analogy).

23 February 2010 4Software Testing: Lecture 11

Risks of Change

Bug regression testing: checks that a bug fix has removed the
symptoms of the bug that have been identified.
Old fix regression: checks that a new fix has not broken an old
fix: refactoring should limit this as old fixes are refactored
into the code.
Functional regression: new code or fix has not broken
previously working code.
Incremental Regression testing: regression testing as we
develop.
Localisation Testing: tests if a product has been correctly
localised for a particular market.
Build Testing: has an error been introduced in the field that
means the system will not build correctly.

23 February 2010 5Software Testing: Lecture 11

Motivation for Reusing Tests

Motivations vary depending on the context:
– In development (e.g. XP) tests play the role of specifications so we

want to keep them fixed and reduce the cost of regression.
– In an established product:

• Using the same tests may help us manage risk since we can focus tests
on mitigating a particular risk.

• Some tests are good at uncovering likely errors so we want to reuse.
• There may be economic motivations:

– Automated retest (replay or oracle).
– Replay with human inspection may reduce the need for specialist technical

time (e.g. in GUI testing – this is a particularly common approach). The aim
is to routinise repeat testing.

23 February 2010 6Software Testing: Lecture 11

Key Questions about Reuse

Which tests should we reuse (for a particular situation – this
may vary if tests are expensive to carry out)?
– The “goodness” of a test is context sensitive, so in a development

situation it may be good to concentrate on the core functionality –
but later in the cycle this may be less important.

What is the cost of maintaining tests?
– Complex tests may make extensive use of the environment and may

be complex to maintain.
– This is not an argument against using complex tests but it is an

argument in favour of developing test architecture to support
tests.

– Specific architectures have corresponding test architectures e.g.
Web Services.

What is the cost of applying tests?
What is the benefit of applying regression tests?

2

23 February 2010 7Software Testing: Lecture 11

A “Model”

F4F4
F3F3

F2F2

F5F5

F1F1
T1

T2
T3

T4

• Clouds F1..5 are fault regions.
• T1..4 are point tests.

23 February 2010 8Software Testing: Lecture 11

Fault Region Model

Systems have fault regions where their behaviour is does not conform
to the requirements.
Tests are point executions of the system.
Test specifications may specify a region in the input space
We still have to execute on test (unless we can do symbolic execution).
Faults come in all shapes and sizes and may overlap or be intertwined.
When a test hits a fault region we discover an error.
At that point – we change the system so:
– The clouds can move,
– A cloud can disappear,
– One of an overlapping pair can disappear
– Clouds can break into fragment or amalgamate,
– Clouds can appear.

So retest can be valuable – approx 15% of errors are discovered by
regression test – these are often critical to product quality.

23 February 2010 9Software Testing: Lecture 11

An analogy: Clearing mines (Bach)

mines This analogy was first presented by Brian Marick.
These slides are from James Bach..

23 February 2010 10Software Testing: Lecture 11

Totally repeatable tests won’t clear the minefield (Bach)

mines fixes

23 February 2010 11Software Testing: Lecture 11

Variable Tests are Often More Effective (Bach)

mines fixes
23 February 2010 12Software Testing: Lecture 11

Automated GUI regression (Bach)

Look back at the minefield
analogy
Are you convinced that
variable tests will find
more bugs under all
circumstances?
– If so, why would people

do repeated tests?
– Are bugs like clouds or

mines?

Generate 5

counter-

examples to the

minefield

analogy.

3

23 February 2010 13Software Testing: Lecture 11

Economic Perspective

What is the best way to improve product quality:
– Maintain a regression test set
– Develop new tests
– Is it possible to develop new tests for low value events (e.g. patch

bundles)
What is the benefit of reusing tests:
– Tends to focus on core functionality of the system
– Perhaps takes a narrow view of the functionality.

Costs:
– How much does it cost to maintain tests?
– How much does it cost to create tests?

23 February 2010 14Software Testing: Lecture 11

Support for Refactoring

Tests act as an executable specification.
Tools like JUnit reduce the cost to the developer.
Tendency to focus on unit level behaviour.
Tendency to focus on function over resource use.
Issues about how to integrate many unit level test sets that
have been created individually.

23 February 2010 15Software Testing: Lecture 11

Risk management

Tests target critical behaviour – the main hazards.
For embedded systems we have good specifications and it may
be possible to infer more from a test result.
We can use combinations of old tests to exercise the system
more extensively on retest:
– More tests.
– More combinations of test.
– More variants.
– With a good specification we can see how the tests cover the

different behaviours of the system.
– We provide independent testers with a large armoury of possible

weapons to break the system.

23 February 2010 16Software Testing: Lecture 11

Summary

Regression testing provides a tool for managing change.
Regression testing can be used throughout the lifecycle.
It can reduce the cost of applying tests (by storing the
expected result).
It is a tool in helping to provide stability in the face of code
change.
Costs of test maintenance and test reuse are very variable but
in some environments it is affordable.
Standards and regulation often require regression testing.
The analogy between a manufacturing environment and a
software production environment is very weak.
The role of testing in the two environments is quite different.

