
1

Software Testing: Lecture 8 15 February 2010

Data Flow Coverage 2

Conrad Hughes
School of Informatics

Slides thanks to Stuart Anderson

5 February 2010 2Software Testing: Lecture 8

Coverage: the point, revisited

We’re attempting to decide what makes a good test.
– i.e judge the adequacy of our test suite.

Surely an adequate test suite will show our software is correct?
– Impossible. Same as proving the software is correct.

So can we say some test suites are better than others?
– Yes, if we can define effective, testable adequacy criteria.

Such as?
– Statement coverage = 1

• But if our test doesn’t exercise all statements, surely it’s no good?
– Branch coverage = 1

• But if our test doesn’t exercise all branches, surely it’s no good?
– Path coverage = 1

• But if our test doesn’t exercise all paths, surely it’s no good? (!)
So they’re actually really inadequacy criteria :(

5 February 2010 3Software Testing: Lecture 8

Subsumption

So really, no tests are as good as we’d want.
But some are provably worse than others:
– Branch coverage necessarily includes statement coverage.

Definition: test coverage criterion A subsumes test coverage
criterion B if and only if, for every program P, every test set
satisfying A with respect to P also satisfies B with respect to P.
If you have branch coverage, you also always have statement
coverage. Branch coverage subsumes statement coverage.
If criterion A subsumes criterion B, and a test suite satisfying
B is guaranteed to find a fault, then a suite satisfying A will
also find that fault.
– But these criteria provide no guarantees.
– And with no guarantee that B will find a fault, we have no

guarantee for A either.

5 February 2010 4Software Testing: Lecture 8

Adequacy review 1

Statement adequacy: all
statements have been executed
by at least one test case.
Branch adequacy: all branches
have been executed by at least
one test case.
Basic condition adequacy: each
basic condition evaluates to true
in at least one test case, and to
false in at least one test case.
Compound condition adequacy
(simplistic definition): each
combination of truth values of
basic conditions must be visited
by at least one test case:

TFTT
TTTT

TTFT
FFFT
TTTF
FFTF
TTFF
FFFF

(X&Y)|ZZYX

5 February 2010 5Software Testing: Lecture 8

Good definitions are important: basic condition

TFTT
TTTT

TTFT
FFFT
TTTF
FFTF
TTFF
FFFF

(X&Y)|ZZYX

{(X=Y=Z=F); (X=Y=Z=T)} appears to
achieve B.C.A., but condition Y is
never evaluated in the first case,
nor Z in the second.
Need, e.g. {(X=F, Y=?, Z=T); (X=T,
Y=Z=F); (X=Y=T, Z=?)} (?=don’t care,
because it’s never evaluated).

X

Y

Z

Z

TF

F T

T

F T

TT

T

F F

F

5 February 2010 6Software Testing: Lecture 8

Exercise: test suite adequacy 1

T0 = { “”, “test”, “test+case%1Dadequacy”}
T1 = {“adequate+test%0Dexecution%7U”}
T2 = {“%3D”, “%A”, “a+b”, “test”}
T3 = { “ ”, “+%0D+%4J”}
T4 = {“first+test%9Ktest%K9”}

Compound
Condition

Basic
Condition

Branch

Statement

T4T3T2T1T0Coverage
Criterion

P&Y p.213-214, Figures 12.1 & 12.2

2

5 February 2010 7Software Testing: Lecture 8

Comments

T2 uncovers a bug in the program. What bug?
Branch coverage appears the same as statement coverage here.
Suggest a code construct which would show branch coverage to
be superior to statement coverage.
Basic condition coverage clearly doesn’t subsume branch
coverage.
While T4 technically satisfies basic condition coverage, you can
argue that it doesn’t. How?
You can also argue that compound condition coverage is
impossible for this code fragment, for a similar reason. This
might lead us to modify our definitions of basic and compound
condition coverage, to make them more practical. How?
Can you suggest enhancements to each test in order to achieve
compound condition coverage?

5 February 2010 8Software Testing: Lecture 8

Adequacy review 2

Test suite T satisfies the path adequacy criterion for program
P iff for each path p of P there exists at least one test case in
T that causes the execution of p.
Loop boundary adequacy criterion: test cases exist such that
each loop is executed zero times, exactly once, and many times.
– Some common sense necessary in application:

• Some loops have a fixed number of iterations.
• How many is “many”?

5 February 2010 9Software Testing: Lecture 8

Exercise: test suite adequacy 2

This routine loops through
elements 0 to n-1 of array A
(stopping if it finds an element
that’s greater than or equal to
X). As it does so, it replaces
any negative entries in A with
their absolute (positive) value.
Generate a test suite (in the
form of some suggested values
for array A, e.g. [1, 2], [3, 4])
which satisfies the path
adequacy criterion for this
program. Assume n=|A|.
Generate a test suite which
satisfies the loop boundary
adequacy criterion.

i=0

i<n &&
A[i]<X

A[i]<0

i++

A[i]=-A[i]

return 1

false true

true
false

5 February 2010 10Software Testing: Lecture 8

Comments

Path adequacy is impossible, even for this trivial example!
Consider the below code fragment. On the surface there are
four paths through it, but a little attention makes it clear that
no test suite could ever exercise one of those paths:

if(a < 0)

a = 0;

if(a > 10)

a = 10;

So, realistically, we must settle for less than 100% coverage.

5 February 2010 11Software Testing: Lecture 8

Adequacy review 3: data flow basics

Data flow criteria are concerned with definition-clear paths
from definition to use of individual variables.
Context is a graph representation of the program, with vertices
being basic blocks.
A definition-use pair (DU pair) is a pairing of definition and use
of a variable, with at least one def-clear path between them
(there could be many).
dcu(x,v) is the set of vertices v’ which use variable x in
computations, and could be directly affected by a definition of
x at v (i.e. there is a def-clear path from v to v’).
dpu(x,v) is the set of edges (v’,v’’) which use variable x in their
predicates (conditions/branches), and could be directly
affected by a definition of x at v (i.e. there is a def-clear path
from v to v’).

5 February 2010 12Software Testing: Lecture 8

Exercise: data flow basics

Identify DU pairs for c (your
answer will be a list of pairs of line
numbers).
Identify DU pairs for digit_high.
Identify the def-predicate uses in
your answers.
Identify the def-computation uses
in your answers.
What is dcu(ok,34)?
What is dpu(ok,20)?
What is dpu(digit_high, 30)?

-17: int cgi_decode(char *encoded, char *decoded) {
-18: char *eptr = encoded;
-19: char *dptr = decoded;
*20: int ok=0;
*21: while (*eptr) {
-22: char c;
*23: c = *eptr;
-24: /* Case 1: '+' maps to blank */
*25: if (c == '+') {
*26: *dptr = ' ';
*27: } else if (c == '%') {
-28: /* Case 2: '%xx' is hex for character xx */
-29:
30: int digit_high = Hex_Values[(++eptr)];
31: int digit_low = Hex_Values[(++eptr)];
*32: if (digit_high == -1 || digit_low == -1) {
-33: /* *dptr='?'; */
34: ok=1; / Bad return code */
-35: } else {
*36: *dptr = 16* digit_high + digit_low;
-37: }
-38:
-39: /* Case 3: All other chars map to themselves */
*40: } else {
*41: *dptr = *eptr;
-42: }
*43: ++dptr;
*44: ++eptr;
-45: }
*46: *dptr = '\0'; /* Null terminator for string */
*47: return ok;
-48: }

3

5 February 2010 13Software Testing: Lecture 8

Adequacy review 4: data flow criteria

All-defs requires that test T exercises each definition in
program P at least once. This means not just executing the
definition, but using its result in at least one computation or
predicate.
All-p-uses requires exercise of all DU pairs culminating in
predicates. Note pairs, not paths: only one def-clear path
needed per DU pair.
All-c-uses requires exercise of all DU pairs culminating in
computations. Note pairs, not paths.
All-p-uses/some-c-uses and all-c-uses/some-p-uses expand
the above two by requiring that all-defs hold as well.
All-uses requires that both all-p-uses and all-c-uses hold.
All-du-paths expands on all-uses by requiring that all def-
clear paths between each DU pair are exercised, modulo loops.

5 February 2010 14Software Testing: Lecture 8

Exercise: data flow criteria

Suggest a set of path(s) which
satisfy all-defs.
Suggest a set of path(s) which
satisfy all-c-uses.
Suggest a set of path(s) which
satisfy all-du-paths.

E

CB

D

A

F

defs(A) = {x,…}

c-use(C) = {x,…}

c-use(B) = {x,…}

c-use(E) = {x,…}

5 February 2010 15Software Testing: Lecture 8

All-Defs Coverage Criterion

We require to use all
definitions.
Here we assume we only use the
variable x.
We require to use each def.
So the path A,B,D,F is OK.
Suppose we defined a variable y
in C and used it in E what would
be a suitable test set?

E

CB

D

A

F

defs(A) = {x,…}

c-use(C) = {x,…}
c-use(B) = {x,…}

c-use(E) = {x,…}

5 February 2010 16Software Testing: Lecture 8

All-Uses Coverage Criterion

We need to ensure we exercise
every use.
So we need the set of test
paths to include:
– A to B
– A to C
– A to E

So a satisfactory test set is:
– A,B,D,F
– A,C,D,E,F

E

CB

D

A

F

defs(A) = {x,…}

c-use(C) = {x,…}c-use(B) = {x,…}

c-use(E) = {x,…}

5 February 2010 17Software Testing: Lecture 8

All DU-paths Coverage Criterion

Here we need to consider all
loop-free paths between A and
vertices that use x.
So we need to include:
– A,B
– A,C
– A,B,D,E
– A,C,D,E

So the following test set
satisfies the coverage criterion:
– A,B,D,E,F
– A,C,D,E,F E

CB

D

A

F

defs(A) = {x,…}

c-use(C) = {x,…}
c-use(B) = {x,…}

c-use(E) = {x,…}

5 February 2010 18Software Testing: Lecture 8

More Complex Data Flow Criteria

Ntafos proposed a generalisation of the original data-
flow criteria to allow iteration of definition/use chains
Foundation:

– Chains of alternating definitions and uses linked by
definition-clear subpaths (k-dr interactions)

– ith definition reaches ith use,
– which defines ith+1 definition
– k is number of iterations

4

5 February 2010 19Software Testing: Lecture 8

k-dr Interactions

x1 = …

x2 = …x1…

x3 = …x2…

xk = …xk-1…
Def-clear for xk-1

Def-clear for x2

Def-clear for x1

5 February 2010 20Software Testing: Lecture 8

Wrapping up

So we can argue that certain criteria are less bad than others.
Where does this get us?
Not terribly far unfortunately: most of the theoretical
research seems to indicate you can’t conclude much about test
effectiveness from your adequacy criteria.
But there is empirical evidence that at very high levels of
coverage, stronger criteria are worth pursuing.
It doesn’t seem surprising though that writing ten times as
many tests in order to satisfy a stronger criterion gives you
better results. The question then is whether these extra
criterion-driven tests are better than extra random ones.
Research now seems to be heading in this more empirical
direction, rather than focusing on theoretical adequacy
comparisons.

5 February 2010 21Software Testing: Lecture 8

I’m away next week!

No lectures, hooray!
Spend that time finishing Practical 1.
I will try to get online every night, so if you’ve any questions I’ll
try to reply to them by the next day.
ST lectures resume on Tuesday, 16th February.

