Testing in the Lifecycle

Conrad Hughes
School of Informatics

Slides thanks to Stuart Anderson

informatics

19 January 2010 Software Testing: Lecture 3

Software was difficult to get right in 1982

Softeare paid for
but not deliverad

Software that could 2q 7%

e used after changes
~3%

Software used
but later reworked

or abandonad
159%

“— Software delivered
but never used
47%

Software that could
be used as delivered
~ 2%

Year 1982: Nine Contracts Totalling $6.8 Million

19 January 2010 Software Testing: Lecture 3

It was still difficult in 1995

3%

29%

20%
2%

Figure 1: Findings of a 1995 Department of Defense Software Niudy
O Software paid for, but not delivered - 29%
Bl Software used, but extensively reworked or abandoned - 20%
[] Software used as delivered - 2%
[] Software delivered, but not successfully used - 46%

[] Software used after changes - 3%
Total Software Costs - $35.7 billion

19 January 2010 Software Testing: Lecture 3 3

... and in 2007

Success rate of government IT projects and programmes

63%

B On budget, on
time, on spec

B Anything in
between

[0 Never saw the
30% ||ght of day

Source: The Guardian, 18 May 2007
Figures from Department for Work and Pensions spokesman (63%)
And Joe Harley, Chief Information Officer, DWP (30%)

19 January 2010 Software Testing: Lecture 3 4

And testing costs are significant

[Gallant, 1999] (and Winokur, 1998?)

19 January 2010 Software Testing: Lecture 3 5

Cost of Testing vs Cost of Defects

= NIST report (2002): "The Economic Impacts of Inadequate
Infrastructure for Software Testing”

= Notes that "developers already spend approximately 80% of
software development costs on identifying and correcting
defects”.

= "Tdentifying and correcting defects” not necessarily the same
thing as the cost of testing, but still...

19 January 2010 Software Testing: Lecture 3 6

Costs of fixing defects found at different stages

B5%

|:| b Defects
imroducad
im i e

D %4 MNefects

foLnd In
thig phase

T Cowt o
repar defect
in s phase

s6no 0 alruanE

Bb

-I"'ﬂding | Fnid Frenchinn Fiedd Frisi
Tesl Tas! Tezt e

Souwre” dpphed Sofware Weasuwemend, Capers Jones, 1390

19 January 2010 Software Testing: Lecture 3 7

Costs of Defects

= Defects in the specification are even more costly to remove if
we don't eliminate them early.
= Different software lifecycles distribute testing (verification -
"building the thing right" and validation - "building the right
thing") differently.
= The different distributions of test activity can have an impact
on where bugs are discovered.
= We consider three representative lifecycles and consider
where testing is located in each:
- The V-model
- Boehm's spiral model
- eXtreme Programming ("XP")

19 January 2010 Software Testing: Lecture 3 8

Recap: “waterfall” model of software development

1. Requirements

Design

Implementation

Testing

Release and maintenance

& b~ w0

= Sequential, no feedback

= Ironically its "author”, Royce, presented it as
an example of a broken model

19 January 2010 Software Testing: Lecture 3 9

less detail

mor e detail

V-model

A Requirements | _ _ _ __ _ Acceptance
Analysis Isvalidated by Testing
System | _ o ___._ System
Design Testing
Object |_____. Unit
Design Testing
Coding
v
> <« -

19 January 2010 build system Software Testing: Lecture 8alidate system 10

V-model Rationale

m This is a modified version of the waterfall model.

= Tests are created at the point the activity they validate is
being carried ouf.

= So, for example, the acceptance test is created when the
systems analysis is carried out.

= Failure to meet the test requires a further iteration beginning
with the activity that has failed the validation.

= V model is focused on creating tests in a structured manner.

= It is popular with developers of systems that are highly
regulated because it is well suited to creating evidence that can
be used to justify a system to a regulator.

19 January 2010 Software Testing: Lecture 3 11

Boehm'’s Spiral Model

DETERMINE GOALS, EVALUATE ALTERNATIVES

ALTERNATIVES, AND RISKS

CONSTRAINTS Consuai\ms A Risk analysis ,
intS 2 i i

o > constr@ Risk analysis ,
o
N o
NZ S ints
» ,&\\4@ const@™ 2 pick analysis 5
N 2
¥ <&°
N Al ‘%;//.) Risk analysis;™\ ' proto- \ Proto- \ Proto-
ey, %
Budget4 Budget3 Budget2 Budget . a[/'/@s J\S\J Prototype 1 type 2 type 3 type 4
% Requirements, Concept of @ Detailed
life-cycle plan operation ’z§® Qg’\‘r’ ,@@@\ design
n, @V@/ >
) ’egr 0 %, Ma aaked A
iy P ‘317&)0 /9/7 /s \|a\\6? me(\’\s Code
o5z Yo eO\““e '63‘66‘- \
/'3/7 < \'a\\ des\g
gerthe Unit test
System
Implementation Acceptance test
plan test
PLAN

19 January 2010

DEVELOP AND TEST

12

Software Testing: Lecture 3

Spiral Model Rationale

= The spiral model is focused on controlling project risk and
attempting formally o address project risk throughout the
lifecycle.

= V &V activity is spread through the lifecycle with more explicit
validation of the preliminary specification and the early stages
of design. The goal here is to subject the early stages of
design to V&V activity.

= At the early stages there may be no code available so we are
working with models of the system and environment and
verifying that the model exhibits the required behaviours.

19 January 2010 Software Testing: Lecture 3 13

XP principles

= eXtreme Programming
advocates working directly with
code almost all the time.

= The 12 principles of XP
summarise the approach.

= Development is test-driven .

m Tests play a central role in
refactoring activity.

m "Agile” development mantra:
Embrace Change.

19 January 2010

—

E A O

—_ =
nNnN = O

Test-driven development
The planning game
On-site customer

Pair programming
Continuous integration
Refactoring

Small releases

Simple design

System metaphor

. Collective code ownership
. Coding standards
. 40-hour work week

Software Testing: Lecture 3 14

Extreme programming (XP)

Test Seanaros [Kent Beck 1999

v Naw Usar Story

wr:mams P&% /Egns\
Jyshem Relsass Latast Custonner

Mt?ﬂhﬂ]nmphm Release yversion A““Ptm“ ﬁmmﬂl. Sm!“.

User Storics

— Planning@& Tests Releases
Uncartaln () Confidant
Estimates Estimatas
spike Loy s E0E 1L Dooan Wk

19 January 2010 Software Testing: Lecture 3 15

Summary

= We have considered three different approaches to the
lifecycle and have seen how testing fits in the lifecycles.

= Each approach will have a different testing cost and cost-
profile through the lifecycle.

= Lifecycles are often dependent on the type of product and how
well we understand project risk.

19 January 2010 Software Testing: Lecture 3 16

