
Software Testing: Lecture 3 119 January 2010

Testing in the Lifecycle

Conrad Hughes
School of Informatics

Slides thanks to Stuart Anderson

19 January 2010 2Software Testing: Lecture 3

Software was difficult to get right in 1982

19 January 2010 3Software Testing: Lecture 3

It was still difficult in 1995

19 January 2010 4Software Testing: Lecture 3

… and in 2007

30%

63%

7%

On budget, on
time, on spec
Anything in
between
Never saw the
light of day

Success rate of government IT projects and programmes

Source: The Guardian, 18 May 2007
Figures from Department for Work and Pensions spokesman (63%)

And Joe Harley, Chief Information Officer, DWP (30%)

19 January 2010 5Software Testing: Lecture 3

And testing costs are significant

[Gallant, 1999] (and Winokur, 1998?)

19 January 2010 6Software Testing: Lecture 3

Cost of Testing vs Cost of Defects

NIST report (2002): “The Economic Impacts of Inadequate
Infrastructure for Software Testing”
Notes that “developers already spend approximately 80% of
software development costs on identifying and correcting
defects”.
“Identifying and correcting defects” not necessarily the same
thing as the cost of testing, but still…

19 January 2010 7Software Testing: Lecture 3

Costs of fixing defects found at different stages

19 January 2010 8Software Testing: Lecture 3

Costs of Defects

Defects in the specification are even more costly to remove if
we don’t eliminate them early.
Different software lifecycles distribute testing (verification –
“building the thing right” and validation – “building the right
thing”) differently.
The different distributions of test activity can have an impact
on where bugs are discovered.
We consider three representative lifecycles and consider
where testing is located in each:
– The V-model
– Boehm’s spiral model
– eXtreme Programming (“XP”)

19 January 2010 9Software Testing: Lecture 3

Recap: “waterfall” model of software development

1. Requirements
2. Design
3. Implementation
4. Testing
5. Release and maintenance

Sequential, no feedback
Ironically its “author”, Royce, presented it as
an example of a broken model

19 January 2010 10Software Testing: Lecture 3

V-model

Requirements
Analysis

System
Design

Object
Design

Coding

Unit
Testing

System
Testing

Acceptance
Testing

le
ss

 d
et

ai
l

m
or

e
de

ta
il

build system validate system

is validated by

19 January 2010 11Software Testing: Lecture 3

V-model Rationale

This is a modified version of the waterfall model.
Tests are created at the point the activity they validate is
being carried out.
So, for example, the acceptance test is created when the
systems analysis is carried out.
Failure to meet the test requires a further iteration beginning
with the activity that has failed the validation.
V model is focused on creating tests in a structured manner.
It is popular with developers of systems that are highly
regulated because it is well suited to creating evidence that can
be used to justify a system to a regulator.

19 January 2010 12Software Testing: Lecture 3

Boehm’s Spiral Model

PLAN DEVELOP AND TEST

DETERMINE GOALS,
ALTERNATIVES,
CONSTRAINTS

EVALUATE ALTERNATIVES
AND RISKS

Requirements,
life-cycle plan

Budget 1

Alternatives
1

Constraints
1

Risk analysis 1

Risk analysis 2

Risk analysis 3

Risk analysis 4

Constraints 2

Constraints 3

Constraints 4

Budget 2Budget 3
Budget 4

Alternative
s 2

Alte
rnative

s 3
Alte

rnative
s 4

Prototype 1

Proto -
type 2

Proto -
type 3

Proto -
type 4

Concept of
operation

Soft
ware

req
uir

em
en

ts

Validated

requirements

Developmentplan
Integration

and test plan

Soft
ware

de
sig

n

Validated,

verified design

Detailed
design

Code

Unit test

System
testAcceptance

test
Implementation

plan

start

19 January 2010 13Software Testing: Lecture 3

Spiral Model Rationale

The spiral model is focused on controlling project risk and
attempting formally to address project risk throughout the
lifecycle.
V & V activity is spread through the lifecycle with more explicit
validation of the preliminary specification and the early stages
of design. The goal here is to subject the early stages of
design to V&V activity.
At the early stages there may be no code available so we are
working with models of the system and environment and
verifying that the model exhibits the required behaviours.

19 January 2010 14Software Testing: Lecture 3

XP principles

eXtreme Programming
advocates working directly with
code almost all the time.
The 12 principles of XP
summarise the approach.
Development is test-driven .
Tests play a central role in
refactoring activity.
“Agile” development mantra:
Embrace Change.

1. Test-driven development
2. The planning game
3. On-site customer
4. Pair programming
5. Continuous integration
6. Refactoring
7. Small releases
8. Simple design
9. System metaphor
10. Collective code ownership
11. Coding standards
12. 40-hour work week

19 January 2010 15Software Testing: Lecture 3

Extreme programming (XP)

[Kent Beck 1999]

http://www.extremeprogramming.org/map/project.html

19 January 2010 16Software Testing: Lecture 3

Summary

We have considered three different approaches to the
lifecycle and have seen how testing fits in the lifecycles.
Each approach will have a different testing cost and cost-
profile through the lifecycle.
Lifecycles are often dependent on the type of product and how
well we understand project risk.

