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Software was difficult to get right in 1982
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~ 2%

Year 1982: Nine Contracts Totalling $6.8 Million

19 January 2010 Software Testing: Lecture 3




It was still difficult in 1995

3%

29%

20%
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Figure 1: Findings of a 1995 Department of Defense Software Niudy
O Software paid for, but not delivered - 29%
Bl Software used, but extensively reworked or abandoned - 20%
[] Software used as delivered - 2%
[] Software delivered, but not successfully used - 46%

[] Software used after changes - 3%
Total Software Costs - $35.7 billion
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... and in 2007

Success rate of government IT projects and programmes

63%

B On budget, on
time, on spec

B Anything in
between

[0 Never saw the
30% ||ght of day

Source: The Guardian, 18 May 2007
Figures from Department for Work and Pensions spokesman (63%)
And Joe Harley, Chief Information Officer, DWP (30%)
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And testing costs are significant

[Gallant, 1999] (and Winokur, 1998?)
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Cost of Testing vs Cost of Defects

= NIST report (2002): "The Economic Impacts of Inadequate
Infrastructure for Software Testing”

= Notes that "developers already spend approximately 80% of
software development costs on identifying and correcting
defects”.

= "Tdentifying and correcting defects” not necessarily the same
thing as the cost of testing, but still...
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Costs of fixing defects found at different stages
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Costs of Defects

= Defects in the specification are even more costly to remove if
we don't eliminate them early.
= Different software lifecycles distribute testing (verification -
"building the thing right" and validation - "building the right
thing") differently.
= The different distributions of test activity can have an impact
on where bugs are discovered.
= We consider three representative lifecycles and consider
where testing is located in each:
- The V-model
- Boehm's spiral model
- eXtreme Programming ("XP")
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Recap: “waterfall” model of software development

1. Requirements

Design

Implementation

Testing

Release and maintenance

& b~ w0

= Sequential, no feedback

= Ironically its "author”, Royce, presented it as
an example of a broken model
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less detail

mor e detail

V-model

A Requirements | _ _ _ __ _ Acceptance
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System | _ o ___._ System
Design Testing
Object  |_____. Unit
Design Testing
Coding
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V-model Rationale

m This is a modified version of the waterfall model.

= Tests are created at the point the activity they validate is
being carried ouf.

= So, for example, the acceptance test is created when the
systems analysis is carried out.

= Failure to meet the test requires a further iteration beginning
with the activity that has failed the validation.

= V model is focused on creating tests in a structured manner.

= It is popular with developers of systems that are highly
regulated because it is well suited to creating evidence that can
be used to justify a system to a regulator.
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Boehm'’s Spiral Model
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Spiral Model Rationale

= The spiral model is focused on controlling project risk and
attempting formally o address project risk throughout the
lifecycle.

= V &V activity is spread through the lifecycle with more explicit
validation of the preliminary specification and the early stages
of design. The goal here is to subject the early stages of
design to V&V activity.

= At the early stages there may be no code available so we are
working with models of the system and environment and
verifying that the model exhibits the required behaviours.
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XP principles

= eXtreme Programming
advocates working directly with
code almost all the time.

= The 12 principles of XP
summarise the approach.

= Development is test-driven .

m Tests play a central role in
refactoring activity.

m "Agile” development mantra:
Embrace Change.
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Test-driven development
The planning game
On-site customer

Pair programming
Continuous integration
Refactoring

Small releases

Simple design

System metaphor

. Collective code ownership
. Coding standards
. 40-hour work week
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Extreme programming (XP)

Test Seanaros [Kent Beck 1999
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Summary

= We have considered three different approaches to the
lifecycle and have seen how testing fits in the lifecycles.

= Each approach will have a different testing cost and cost-
profile through the lifecycle.

= Lifecycles are often dependent on the type of product and how
well we understand project risk.
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