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It’s very important to know your coverage criteria definitions when attempting this kind
of question. It’s also worth doing one or two run-throughs with some simple inputs just to
familiarise yourself with the code before you start to design your tests.

1. Control flow graph:

match(String haystack, String needle)

Still might find a needle

Testing needle against current position in haystack

[A]
match(String haystack, String needle) {
for(int i = 0;

[B] (for, ctd)
i + needle.length() <= haystack.length();

[D]
return -1;

F

[C]
int j = 0;

T

[L] (for, ctd)
++i)

[E]
while(j < needle.length() &&

[G]
haystack.charAt(i + j) == needle.charAt(j))

[H]
++j;

T

F

T

F

[J]
if(j == needle.length())

F

[K]
return i;

T

Note how the for loop is broken up over three nodes: A, B and L.

(In this case there are no nodes labelled F or I in order to avoid confusion with False
branches, digit 1, letter l, etc.)



2. Annotations — note that the simplest thing is to write these on the graph itself, but
typesetting that would be a lot of work.

Node Defs/uses

A defs={haystack,needle,i} G p-uses={haystack,i,j,needle}
B p-uses={i,needle,haystack} H defs={j}; c-uses={j}
C defs={j} J p-uses={j,needle}
D [none] K c-uses={i}
E p-uses={j,needle} L defs={i}; c-uses={i}

3. Table: this is the same information as above, but now keyed by variable. This presen-
tation makes it easier to identify all of the def-use pairs.

Variable defs c-uses p-uses

haystack A BC,BD,GH,GJ
needle A BC,BD,EG,EJ,GH,GJ,JK,JL
i A,L K,L BC,BD,GH,GJ
j C,H H EG,EJ,GH,GJ,JK,JL

4. Def-use pairs. Note here that variables i and j have more than one definition, so the
issue of def-clear paths comes up. Consequently when designing paths to cover a du-pair
(X,Y), we must be careful that the path between X and Y is def-clear for any relevant
variables.

all-defs: (A,B/G); (A,B/E/G/J); (A,K/L/B/G); (L,K/L/B/G); (C,H/E/G/J);
(H,H/E/G/J)

(X,Y/Z) means at least one of (X,Y) or (X,Z); note that I don’t specify which
branch ((A,BC) vs (A,BD)) because it doesn’t matter if all we want is at least one

— once we’ve reached B from A, any branch will satisfy all-defs, be it BC or BD.

all-c-uses: (A,K); (A,L); (L,K); (L,L); (C,H); (H,H)

all-p-uses: (A,BC); (A,BD); (A,GH); (A,GJ); (A,EG); (A,EJ); (A,JK); (A,JL); (L,BC);
(L,BD); (L,GH); (L,GJ); (C,EG); (C,EJ); (C,GH); (C,GJ); (C,JK); (C,JL); (H,EG);
(H,EJ); (H,GH); (H,GJ); (H,JK); (H,JL)

all-uses: union of all-c-uses and all-p-uses.

5. Any the same? No, but notice that if you satisfy all-p-uses it’s clear from the def-use
table that you’ll automatically satisfy all-defs. This isn’t always true. Be aware of the
graphs showing subsumption relationships in the slides.

6. Does an all-defs-adequate suite need to satisfy statement coverage? No: you could
satisfy all-defs without ever reaching node D for example.

7. Test suites:

all-defs: match("xy", "xz") → −1 would cause the path ABCEGHEGJLBD to
be executed. This satisfies all-defs.



all-c-uses: Two tests are needed:

• match("x", "x") → 0 would cause the path ABCEGHEJK to be executed.
This covers pairs (A,K) and (C,H) from our path set, leaving (A,L), (L,K),
(L,L) and (H,H) still to cover.

• To get (L,L) and (H,H) we need to see more than one iteration of both the
i-loop and the j-loop. Adding match("yyxx", "xx") → 2 to the suite will
execute the path ABCEGJLBCEJLBCEGHEGHEJK, which covers all
of these remaining pairs.

Note that the first test is necessary since the second test doesn’t contain a def-clear
path for i from A to K since the second test’s path contains node L (redefining i)
between A and K.

all-p-uses: A much longer list of def-use pairs to cover. . .

• match("", "x") → −1 will execute path ABD, covering (A,BD).

• match("x", "") → 0 will execute path ABCEJK, covering (A,BC), (A,EJ),
(A,JK), (C,EJ), and (C,JK).

• match("y", "x") → −1 will execute path ABCEGJLBD, covering (A,GJ),
(A,EG), (A,JL), (L,BD), (C,EG), (C,GJ) and (C,JL).

• match("yyyx", "yx")→ 2 will execute path ABCEGHEGJLBCEGHEGJL-

BCEGHEGHEJK, covering (A,GH), (L,BC), (L,GH), (L,GJ), (C,GH), (H,EG),
(H,EJ), (H,GH), (H,GJ), (H,JK) and (H,JL).

The technique here is to see what you haven’t covered, then add a test targetting
some of the uncovered d-u pairs (or even a random test if you’re stuck), then see
what you still haven’t covered, and so on.

all-uses: The above all-p-uses test actually covers all-c-uses too, so it’s also all-uses-
adequate.

8. To achieve all-du-paths: remember that the definition specifies that all paths between
def-use pairs must be executed, modulo loops. So you’d need to ensure for exam-
ple that for the (C,JK) pair with respect to variable j, that paths CEJK, CEGJK,
CEGHEJK, and CEGHEGJK are covered. This is clearly a lot of work, and not
something I’m about to ask you to do. . .


