
1

Software Testing: Lecture 12 127 February 2009

GUI Testing

Conrad Hughes
School of Informatics

Slides thanks to Stuart Anderson

27 February 2009 2Software Testing: Lecture 12

GUI Testing: Overview

GUI testing as an example of the use of regression testing.
Automating GUI testing.
The pitfalls of automating GUI Testing
Approaches to the architecture of GUI testing
Problems in GUI Test automation (Kaner)
Summary

27 February 2009 3Software Testing: Lecture 12

GUI Testing

Most systems have a large GUI component. The GUI code is
dense, often sensitive to small environment changes, difficult to
test. But many bugs are present in GUI code.
Common approach is to attempt to automate GUI testing:
– One-off activity (Human):

• Analyse product and design and write test code.
• Run the test
• May require debugging (both product and test code) and iteration to

establish correct behaviour.
• Capture and store GUI output
• Package test code and results along with documentation.

– Many-off activity (Machine):
• Run the test code and capture the output.
• Compare the output with the canned output.
• If it matches OK, otherwise get someone to look at the output.

– Many-off activity (Human): inspect erroneous output, maintain test.

27 February 2009 4Software Testing: Lecture 12

Semi-automated GUI Testing Issues

Creating code for automated tests is more expensive than
normal testing.
Maintenance costs are high (because code needs modifying).
Often interfaces can be quite dynamic – but this approach
tends to encourage no change to the interface.
Depending on costly automated tests can make test regime too
rigid.
Regression test benefits come late (when the system is stable)
but costs can come early and maintenance through early
versions is costly.
Need to take an engineering approach to the design and
maintenance of GUI regression tests.

27 February 2009 5Software Testing: Lecture 12

What’s the Problem with Capture/Replay?

Localisation:
– Language
– Local formats (e.g. UK/US Date format)

Personalisation
– Colour schemes, pictures, fonts, size and position of pop-ups, …
– Preferred formats e.g. page a day diary vs week on a page, what is

the first day of the week…
– Short cuts, optional dialogue steps, …

Environment
– What Browser/Window Manager
– Availability of helper applications
– Different environments can lead to different GUI behaviour for

the same sequence of interface gestures.

27 February 2009 6Software Testing: Lecture 12

Sources of Variability in GUIs

Variability in input devices, libraries etc.
Variability in output devices.
Variations in the desired results (because of personalisation).
UI is subject to evolution (e.g. aspects of look and feel,
presentation issues).
Finally, over a long period test tools change, scripts become
obsolete, …

2

27 February 2009 7Software Testing: Lecture 12

Data Driven GUI Test Architectures

GUIs have to do with the user supplying inputs in order that the
system can create its response.
For some systems we can exhaustively list all the possible input
attributes (e.g. a diary: date, time slot, entry, + lots of
configuration attributes).
Build a data driven tester where we envisage a test suite as a
table where each row represents a test and each column is a
particular input variable.
By placing a value v in row i and column j this means that for
test i we want to set attribute j to the specified value.
For each column, j, of the table there is a script that controls
the GUI so that attribute j gets set to the value in that table
entry.
The test executor, executes test i by successively setting
attribute 1, 2, 3, …

27 February 2009 8Software Testing: Lecture 12

GUI Test Architectures

Once the GUI has been driven to set the input attributes we
need to test whether the result is correct. This could range
from:
– Comparing the screen image with a canned version.
– Defining a similar set of observations that should be made of the

system:
• We could define a set of output attributes, specifying values

appropriately.
• The test interpreter would then drive the system to recover those

attributes and compare them with the specified values.

27 February 2009 9Software Testing: Lecture 12

Benefits of Simple Data Driven Architecture

Data driven approach provides a quick, natural way to define
and review tests.
Resilient to change in all elements of the system.
Testers can focus on tests not coding
Provides a good platform for regression testing.
Is applicable to a wide range of products.
Requires simple, reusable coding to automate a large number of
tests.

27 February 2009 10Software Testing: Lecture 12

Deficiencies of Simple Data Driven Architecture

Doesn’t really provide a model of test (or does it?)
Is there an explicit notion of coverage? (n – but it might be
definable).
No provision for working with state (e.g. databases,
sequentiality in the interface, modes poorly supported).
It presumes we can enumerate all attributes in the interface.
Handles dependency between attributes poorly.

27 February 2009 11Software Testing: Lecture 12

GUI Test Automation Readings

Chris Agruss, Automating Software Installation Testing
Tom Arnold, Visual Test 6 Bible
James Bach, Test Automation Snake Oil
Hans Buwalda, Testing Using Action Words
Hans Buwalda, Automated testing with Action Words: Abandoning Record &
Playback
Elisabeth Hendrickson, The Difference between Test Automation Failure and
Success
Mark Fewster & Dorothy Graham, Software Test Automation
Linda Hayes, The Automated Testing Handbook
Doug Hoffman, Test Automation course notes
Cem Kaner, Avoiding Shelfware: A Manager’s View of Automated GUI Testing
Cem Kaner, Architectures of Test Automation
John Kent, Advanced Automated Testing Architectures
Bret Pettichord, Success with Test Automation
Bret Pettichord, Seven Steps to Test Automation Success
Keith Zambelich, Totally Data-Driven Automated Testing

27 February 2009 12Software Testing: Lecture 12

Common mistakes in GUI test automation (Kaner)

1. Don’t write simplistic test cases.
2. Don’t make the code machine-specific.
3. Don’t automate bad tests.
4. Don’t create test scripts that won’t be easy to maintain over

the long term.
5. Avoid complex logic in your test scripts.
6. Don’t mix test generation and test execution.
7. Don’t deal unthinkingly with ancestral code.
8. Don’t forget to retire outdated or redundant regression tests.

3

27 February 2009 13Software Testing: Lecture 12

Common mistakes in GUI test automation

9. Don’t spend so much time and effort on regression testing.
10. Don’t stop asking what bugs you aren’t finding while you

automate tests.
11. Don’t use capture/replay to create tests.
12. Don’t write isolated scripts in your spare time.
13. Don’t assume your test tool’s code is reliable or unlikely to

change.
14. Don’t put up with bugs and bad support for the test tool.
15. Don’t “forget” to document your work.
16. Don’t fail to treat this as a genuine programming project.

27 February 2009 14Software Testing: Lecture 12

Common mistakes in GUI test automation

17. Don’t insist that all your testers (or all the testers you
consider skilled) be programmers.

18. Don’t give the high-skill work to outsiders.
19. Don’t underestimate the need for staff training.
20. Don’t use automators who don’t understand testing (or use them

cautiously).
21. Don’t use automators who don’t respect testing.
22. Don’t mandate “100% automation.”

27 February 2009 15Software Testing: Lecture 12

Common mistakes in GUI test automation

23. Don’t underestimate the cost of automation.
24. Don’t estimate the value of a test in terms of how often you

run it.
25. Don’t equate manual and automated testing.
26. Don’t expect to be more productive over the short term.
27. Don’t put off finding bugs in order to write test cases.
28. Don’t expect to find most of your bugs with regression tests.
29. Don’t forget to clear up the fantasies that have been spoon-fed

to your management.

27 February 2009 16Software Testing: Lecture 12

Summary

Regression automation an be expensive: there are serious costs
associated with the evolution of all the software elements.
We are doing computer-assisted testing, not full automation so there
are possibly significant human costs associated with false error
reporting.
Regression is just one target of (partial) automation. You can create
and run new tests instead of reusing old tests but with an established
product you probably want to know you haven’t lost anything you care
about
Developing programmed tests is software development and many
scripting environments encourage tight linkage to the UI framework.
Maintainability is difficult to attain because GUIs are quite specific to
their environment.
The balance between writing new tests and rerunning old tests is very
dependent on the type of product, time in the product lifecycle, type
of product.

