Data Flow Coverage 2

Conrad Hughes
School of Informatics

Slides thanks to Stuart Anderson

‘nformatics

10 February 2009 Software Testing: Lecture 8 1

Coverage: the point, revisited

= We're attempting to decide what makes a good test.
- i.e judge the adequacy of our test suite.
= Surely an adequate test suite will show our software is correct?
- Impossible. Same as proving the software is correct.
= So can we say some test suites are better than others?
- VYes, if we can define effective, testable adequacy criteria.
= Such as?
- Statement coverage = 1
+ But if our test doesn't exercise all statements, surely it's no good?
- Branch coverage = 1
+ But if our test doesn't exercise all branches, surely it's no good?
- Path coverage = 1
+ But if our test doesn't exercise all paths, surely it's no good? (!)
= So they're actually really inadequacy criteria :(

10 February 2009

Software Testing: Lecture 8 2

S .
Subsumption @

= So really, no tests are as good as we'd want.
= But some are provably worse than others:
- Branch coverage necessarily includes statement coverage.
= Definition: fest coverage criterion A subsumes test coverage
criterion B if and only if, for every program P, every test set
satisfying A with respect to P also satisfies B with respect to P.

Adequacy review 1

= Statement adequacy: all
statements have been executed
by at least one test case.

= Branch adequacy: all branches
have been executed by at least
one test case.

= Basic condition adequacy: each X Y Z (X&Y)|Z
= If you have branch coverage, you also always have statement basic condition evaluates to true 3 F F F
coverage. Branch coverage subsumes statement coverage. in af least one test case, and to
. L . oA false in at least one test case F F i} I
= If criterion A subsumes criterion B, and a test suite satisfying a Bl ition ad ' F T F 3
B is guaranteed fo find a fault, then a suite satisfying A will SlclilboRiocondition adequacy
also find that fault (simplistic definition): each P T T T
S . combination of truth values of T F F F
- But these criteria provide no guarantees. basic conditions must be visited = = = =
- And with no guarantee that B will find a fault, we have no by at least one test case: = = 5 =
guarantee for A either.
T T T T
10 February 2009 Software Testing: Lecture 8 3 10 February 2009 Software Testing: Lecture 8 4
03

X y z | Xz
F F F F
F F T T
F T F F
F T T T
T F F F
T F T T
T T F T
T T T T

= {(X=Y=Z=F); (X=Y=Z=T)} appears to
achieve B.C.A., but condition Y is
never evaluated in the first case,
nor Z in the second.

= Need, e.g. {(X=F, ¥=?, Z=T); (X=T,
Y=Z=F); (X=Y=T, Z=?)} (?=don’t care,
because it's never evaluated).

10 February 2009

Software Testing: Lecture 8 5

Exercise: test suite adequacy 1 :

= To={", “fest”, “test+case%1Dad "}

= T, ={"adequate+test%0ODexecution%7U"}

=T, D", "%A", "a+b", “test'}

o "+%0D+%4T")

= T,={first+test%9Ktest%K9")

Coverage | 1o | 11| 12 | T3 | T4 '
Criterion

Statement

Branch

Basic —y
Condition :

Compound

Condition P&Y p.213-214, Figures 12.1 & 12.2

10 February 2009

Software Testing: Lecture 8 6

Comments

= T2 uncovers a bug in the program. What bug?

= Branch coverage appears the same as statement coverage here.

Suggest a code construct which would show branch coverage to

be superior to statement coverage.

Basic condition coverage clearly doesn't subsume branch

coverage.

= While T4 technically satisfies basic condition coverage, you can
argue that it doesn't. How?

= You can also argue that compound condition coverage is
impossible for this code fragment, for a similar reason. This
might lead us to modify our definitions of basic and compound
condition coverage, to make them more practical. How?

= Can you suggest enhancements to each test in order to achieve
compound condition coverage?

10 February 2009 Software Testing: Lecture 8

Adequacy review 2

= Test suite T satisfies the path adequacy criterion for program
P iff for each path p of P there exists at least one test case in
T that causes the execution of p.
= Loop boundary adequacy criterion: test cases exist such that
each loop is executed zero times, exactly once, and many times.
- Some common sense necessary in application:
+ Some loops have a fixed number of iterations.
+ How many is “many"?

10 February 2009 Software Testing: Lecture 8 8

Exercise: test suite adequacy 2

= This routine loops through
elements O to n-1 of array A,
replacing any negative entries in
A with their absolute (positive)
value.

= Generate a test suite (in the
form of some suggested values
for array A, e.g. [1, 2], [3, 4])
which satisfies the path
adequacy criterion for this
program. Assume n=|A|.

= Generate a test suite which
satisfies the loop boundary
adequacy criterion.

10 February 2009 Software Testing: Lecture 8

Comments

@
= Path adequacy is impossible, even for this trivial example!
Consider the below code fragment. On the surface there are
four paths through it, but a little attention makes it clear that
no test suite could ever exercise one of those paths:
if(a<0)
a = 0;
if(a > 10)
a = 10;
= So, realistically, we must settle for less than 100% coverage.

10 February 2009 Software Testing: Lecture 8 10

K-

Adequacy review 3: data flow basics

= Data flow criteria are concerned with definition-clear paths
from definition to use of individual variables.

= Context is a graph representation of the program, with vertices
being basic blocks.

= A definition-use pair (DU pair) is a pairing of definition and use
of a variable, with at least one def-clear path between them
(there could be many).

= dcu(x,v) is the set of vertices v' which use variable x in
computations, and could be directly affected by a definition of
x at v (i.e. there is a def-clear path from v to v').

= dpu(x,v) is the set of edges (v',v") which use variable x in their
predicates (conditions/branches), and could be directly
affected by a definition of x at v (i.e. there is a def-clear path
from v to v').

10 February 2009 Software Testing: Lecture 8

o

Exercise: data flow basics . 3

Identify DU pairs for c (your

answer will be a list of pairs of line =,

numbers). -

Identify DU pairs for digit_high. -

= Identify the def-predicate uses in
your answers. -

= Identify the def-computation uses -
in your answers. &

= What is decu(ok, 34)?

= What is dpu(ok, 20)?

= What is dpu(digit_high, 30)?

%) {
“W#xx* is hex for character xx */

= Hex_Values[*(++eptr)];
Hex_Values[*(++eptr)1;
== -1 || digit_low == -1) {

ptr="2"; =,
ok=1; /* Bad return code */
Y else {
dptr = 16 digit_high + digit_low;

/* Case 3: Al other chars map to themselves */
3 else
*dptr = *eptr;

b
++dptr;
++eptr;

2
*dptr = *\0*; /* Null terminator for string */
return ok;

10 February 2009 Software Testing: Lecture 8 12

d"N\’

Adequacy review 4: data flow criteria 3 Exercise: data flow criteria
= All-defs requires that test T exercises each definition in = Suggest aset of path(s) which

program P at least once. This means not just executing the satisfy all-defs. defs(A) ={x,...}

definition, but using its result in at least one computation or = Suggest a set of path(s) which

predicate. satisfy all-c-uses. \ . c-use(C) = {x...}
= All-p-uses requires exercise of all DU pairs culminating in = 5“99;5T | SS* of Pa* (s) which

predicates. Note pairs, not paths: only one def-clear path satisiyfugdu-paths. e

needed per DU pair. c-use(B) = {X,... \
= All-c-uses requires exercise of all DU pairs culminating in e

computations. Note pairs, not paths.
= All-p-uses/some-c-uses and all-c-uses/some-p-uses expand

the above two by requiring that all-defs hold as well. c-use(E) = {x,...}
= All-uses requires that both all-p-uses and all-c-uses hold.
= All-du-paths expands on all-uses by requiring that all def- G

clear paths between each DU pair are exercised, modulo loops.
10 February 2009 Software Testing: Lecture 8 13 10 February 2009 Software Testing: Lecture 8 14

All-Defs Coverage Criterion All-Uses Coverage Criterion

= We require to use all = We need to ensure we exercise

definitions. every use.
= Here we assume we only use the = So we need the set of test
variable x. paths to include: _
= We require to use each def. c-use(B) 3 - AfoB c-use(B) £ {x,...} c-use(C) = {x,...}
= So the path A,B,DF is OK. - AtoC e
= Suppose we defined a variable y - AtoE
in C and used it in E what would \ = So asatisfactory fest set is: \

be a suitable test set? Q - ABDF Q
- ACDEF
\®c—use(E) ={x..} \®c—use(E) ={x..}

10 February 2009 Software Testing: Lecture 8 15 10 February 2009 Software Testing: Lecture 8 16

All DU-paths Coverage Criterion More Complex Data Flow Criteria :

= Here we need to consider all = Ntafos proposed a generalisation of the original data-

loop-free paths between A and defs(A) ={x,...} flow criteria to allow iteration of definition/use chains
vertices that use x. = Foundation:
- 5_° “/’f;eed to include: c-use(C) = {x,...} - Chains of alternating definitions and uses linked by
ne c-use(B) #{x,...} definition-clear subpaths (k-dr interactions)

- ith definition reaches ith use,

- ABDE e e . A ; Fean
- ACDE \@,/ - which defines ith+1 definition

= So the following fest set - kis number of iterations

satisfies the coverage criterion:
- ABDEF
- ACDEF c-use(E) = {x,...}

10 February 2009 Software Testing: Lecture 8 17 10 February 2009 Software Testing: Lecture 8 18

k-dr Interactions

10 February 2009

e,

Def-clear for x1

Software Testing: Lecture 8

Def-clear for x2

Wrapping up

= So we can argue that certain criteria are less bad than others.
Where does this get us?

= Not ferribly far unfortunately: most of the theoretical
research seems to indicate you can't conclude much about test
effectiveness from your adequacy criteria.

= But there is empirical evidence that at very high levels of
coverage, stronger criteria are worth pursuing.

= It doesn't seem surprising though that writing ten times as
many tests in order to satisfy a stronger criterion gives you
better results. The question then is whether these extra
criterion-driven tests are better than extra random ones.

= Research now seems fo be heading in this more empirical
direction, rather than focusing on theoretical adequacy
comparisons.

10 February 2009 Software Testing: Lecture 8 20

