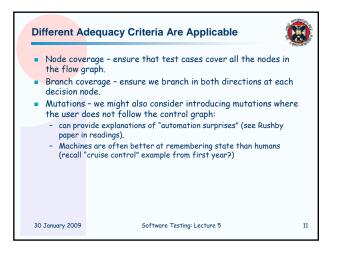
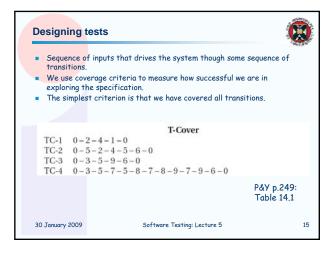

Coverage C	Criterion	0
inputs dra would need With large n categori We can re possible m For examp ensure all and (Displa	ts just took a simple approach to exhaustive testing wn from Display Mode, Fonts, and Screen Size we d to consider 27 test cases. e numbers of categories this becomes prohibitive (e.g. es each of size k has k ⁿ possible cases. duce this by just requiring that the input set cover al i-tuples of each subset of m variables drawn from n. ble in the case above we might require that we just pairs of (Display Mode, Fonts), (Fonts, Screen Size) ay Mode, Screen Size) are covered in the test set. Side demonstrates this reduces the test set from 27 ons to 9.	
30 January 2009	Software Testing: Lecture 5	4


Display mode × Sci	een size	Fonts
Full-graphics	Hand-held	Minimal
Full-graphics	Laptop	Standard
Full-graphics	Full-size	Document-loaded
Text-only	Hand-held	Standard
Text-only	Laptop	Document-loaded
Text-only	Full-size	Minimal
Limited-bandwidth	Hand-held	Document-loaded
Limited-bandwidth	Laptop	Minimal
Limited-bandwidth	Full-size	Standard P&Y p.191 Table 114

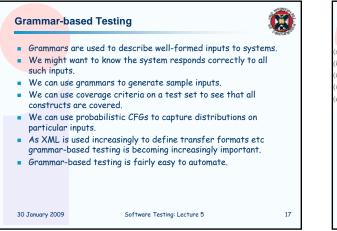
Summary	
but probat Alternativ	enumerating all possible combinations is exhaustive bly infeasible given cost constraints. e is to choose some systematic way of reducing the
	e we chose to find all pairs. eria are possible - see the reading.
30 January 2009	Software Testing: Lecture 5

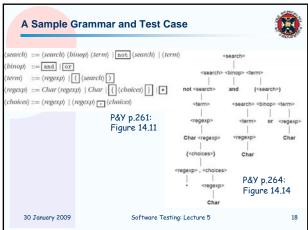
ode					F		p.260: 14.8 & 14.9
Case	Too small	Ship where	Ship method	Cust type	Pay method	Same addr	CC valid
TC-1	No	Int	Air	Bus	CC	No	Yes
TC-2	No	Dom	Air	Ind	CC	-	No (abort)
ranch							
Case	Too small	Ship where	Ship method	Cust type	Pay method	Same addr	CC valid
TC-1	No	Int	Air	Bus	CC	No	Yes
TC-2	No	Dom	Land	-	-	-	-
TC-3	Yes	-	-	-	-	-	-
TC-4	No	Dom	Air	_	_	2	_
TC-5	No	Int	Land	-	-	-	-
TC-6	No	_	-	Edu	Inv	-	-
					CC	Yes	
TC-7	No	-					
TC-7 TC-8	No No	-	-	-	CC	-	No (abort)

Finite State Machines


- Good at describing interactions in systems with a small number of modes.
- Good at describing transducers (via finite state machines).
 Widely used in industry (via Statecharts (see Harel reference
- in the Readings) + associated tools).
 Most systems are "infinite state" (or effectively so), but many systems are finite state + parameters there are a finite set of states that control the way data is moved around.
- of states that control the way data is moved around.
 Good examples are systems like communication protocols or many classes of control systems (e.g. automated braking, flight control systems).
- control systems).
 Transitions are generally made on inputs (e.g. the discovery of some state of affairs e.g. that the wheels are locked in a braking system)
- Good for describing interactive systems that rarely reach a final state

Software Testing: Lecture 5


13


30 January 2009

<section-header><section-header>

Generating Tests

19

- Coverage criteria are important, e.g.:
 Every production at least once
 Boundary conditions on recursive productions 0, 1, many
- Probabilistic CFGs allow us to prioritise heavily used constructs. Probabilistic CFGs can be used to capture and abstract realworld data.
- We can easily generate erroneous data using simple mutations in the rules or final sentential forms.
- CFGs can be used to model interaction and low level detail in GUIs.

30 January 2009

Software Testing: Lecture 5

Choice Crit	eria	8
 Experienc Availabilit Cost/bene 	n does the specification take? e of the team in different methods. y and quality of tools ifit analysis on the range of techniques and the sudget (some approaches may require too much ture	
30 January 2009	Software Testing: Lecture 5	20