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Three Issues

How do we pose the objective of actively seeking information
as a part of the motion synthesis problem?

How do we devise motion strategies that accommodate
‘minimal sensing’?

The problem of information asymmetry and its relevance to
robotics (just a few remarks on this one)



Q1: In Terms of Tasks of Mobile Robots

SLAM
mapping localization

integrated
approaches
active
localization
exploration

path planning
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Exploration and SLAM

SLAM is typically passive, because it
consumes incoming sensor data

Exploration actively guides the robot to
cover the environment with its sensors

Exploration in combination with SLAM:
Acting under pose and map uncertainty

Uncertainty should/needs to be taken into
account when selecting an action
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Mapping with Particle Filters

* Each particle represents a possible trajectory of the robot
e Each particle
— maintains its own map and

— updates it upon “mapping with known poses”

e Each particle survives with a probability proportional to the
likelihood of the observations relative to its own map
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Factorized Mapping Problem
(Rao-Blackwellization)

poses map observatlons & odometry

p(m |z, z22Qp(x | z,u)

/

Mapping with known poses

Particle filter representing trajectory hypotheses
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Particle Filter for Mapping

map of particle 3 » ] Al &
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Combining Exploration and SLAM

The previous approaches are purely passive

By reasoning about control, the mapping process can be made
much more effective

e Question: Where to move next?
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Decision Theoretic Approach

Learn the map using a Rao-Blackwellized particle filter

Consider a set of potential actions
* Apply an exploration approach that minimizes the overall
uncertainty

Utility = uncertainty reduction - cost
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Exploration Problem
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Uncertainty of a Posterior

* Entropy is a general measure for the uncertainty of a posterior

H(p(z)) = — / p(z) log p(z) dz
Ex[— log(p(z))]

* Information Gain = Uncertainty Reduction

I(t+1]t) = H(p(z)) — Hp(xi41))
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Entropy Computation

H(p(z,y))

Egzy[—10gp(z,y)]
Eyyl—109(p(x) p(y | ))]
Egy[—10gp(x)] + Ezy[—l0gp(y | )]

= H(p(x))+ —p(x,y)logp(y | z) dx dy
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' xay

H(p(x)) + - —p(y | )p(x) logp(y | =) dx dy

Hp@)) + [ p@) | ~p(y | 2)109p(y | ) dy dr
H(p(x) + | p(@)H(p(y | 2)) da
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Computing Map and Pose Uncertainty

data (laser
H(p(z,m | d/ and odometry)
= H(p(x|d) + [ pla | )H(p(m | 2,d)) da

FFparticles - _
~ Hip@|d)+ Y wHEm |20, )

/N

trajectory particle map
uncertainty weight uncertainty
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Computing Entropy of the Map Posterior

Occupancy Grid map m:

‘fif(p(m)) = — > p(c)logp(c) + (1 —p(c))log(1l — p(c))

ceEm

v N

uncertainty  9rd cells  probability that the
cell is occupied
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Map Entropy

Low entropy
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The overall entropy is the sum of the individual entropy values
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Trajectory Posterior Entropy

Average pose entropy over time:

1 t
Hp(ery | ) = 3 Hpley | d)
t/=1
start 1
: af _,},_u,.]\i §
]\1 !T- g
=t | o 1 20w @ %
@ , time step
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Information Gain

= The reduction of entropy in the model

observations .
action

to be obtained /
l H before action

I(g, (L) —_ / is carried out
H(p(m,a’: ‘ d)) o
H(p(m, =,z | d,a,Z))

\

H after action is

new poses introduced carried out

by action
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Computing Expected Information Gain

* To compute the information gain one needs to know the
observations obtained when carrying out an action

* This quantity is not known! Reason about potential
measurements

Ell(a)] = /gp(z a,d) - I(Z,a) dz
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The Utility

* To take into account the cost of an action, we compute a
utility

U(a) = I(a)— a- cost(a)

e Select the action with the highest expected utility

o = arggnax{E[U(a)]}
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Q2: In Terms of |-Spaces

When there are sensors, planning naturally lives in an information space.

We need to develop:

B Formulations of sensor models, I-spaces

B Models of complexity, computation over |-spaces
B Sampling-based planning methods
B Combinatorial planning methods

For C-spaces, the early steps were already done (Lagrangian mechanics).
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History of Information Spaces

Where have information spaces arisen?

Early appearance of concept: H. Kuhn, 1953

B Extensive form games
Unknown state information regarding other players.
B Stochastic control theory
Disturbances in prediction and measurements cause imperfect state
information.
B Robotics/Al
Uncertainty due to limited sensing.

Alternative names: belief states, knowledge states, hyperstates
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What is a Sensor?

Light-dependent resistor GPS unit

S

Wireless card Toilet float mechanism

We know it when we see it, but will not try to formally classify.
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What is a Sensor, again?

B Transfer function converts physical phenomenon to sensor reading:
g: R —R.

B Domain of g may be absolute vs. relative.
g itself may be linear or nonlinear.
Resolution is given by set of possible g(x).

B Sensitivity is set of stimuli that produce same reading.
Repeatability is producing same readings under same phenomena.
B Calibration eliminates systematic errors.

You will find these notions in sensor handbooks.
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Physical vs. Virtual Sensors

Physical sensor: The real thing.
g

T

Virtual sensor: Mathematical model of information obtained from a
sensing system.

A virtual sensor could have many alternative physical-sensor
implementations.

Identifying which virtual sensor is required will lead to better filter design
and planning algorithms.
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Consider this Mobile Robot

B Observation: The wall is 3 meters away.
B What possible external physical worlds are consistent with that?

Structure and Synthesis of Robot Motion
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Problem Structure

B Localization only: Set of possible configurations
B Mapping only: Set of possible environments
B Both: Set of configuration-environment pairs

Let Z be any set of sets.

Each Z € Zisa“map”.
Each z € Z is the configuration or “place” in the map.

Unknown configuration and map yields a state space as:

All (z,Z)suchthat z € Zand Z € Z.

26/03/2012 Structure and Synthesis of Robot Motion
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State Space for Planar Mobile Robot

Without any obstacles:

B Any position (q,,q,) € R?
B Any orientation gy € [0, 27)
B Let state space X be all positions and orientations

Can imagine X C R‘?’; however, for orientation, we have additional
topology since gy = 0 = 2.

Could write X = R? x S in which S! is a circle and the set of all
orientations.

Could write X = SE/(2), set of all 2D rigid-body transformations.
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State Space given a Map

Suppose L C R? is known to be the set of allowable positions.

Must have (g, q,) € E.

State space: X = E x S!

Structure and Synthesis of Robot Motion
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State Space for One of Many Maps

Given a set of & possible maps:

For example, could be given 5 maps:

€ ={F\,FEs, Fs, Ey, F5)

X is all (¢, £;) in which (¢..,q,) € E;and E; € £.

Recall the common structure.

Structure and Synthesis of Robot Motion
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State Space for Unknown Map

Given an infinite map family, £, of environments.

Examples:

B The set of all connected, bounded polygonal subsets that have no
interior holes (formally, they are simply connected).

B The previous set expanded to include all cases in which the polygonal
region has a finite number of polygonal holes.

B All subsets of R? that have a finite number of points removed.

B All subsets of R? that can be obtained by removing a finite collection
of nonoverlapping discs.

B Al subsets of R? obtained by removing a finite collection of
nonoverlapping convex sets.

B A collection of piecewise-analytic subsets of R2.

26/03/2012

Structure and Synthesis of Robot Motion 30



State Space for Unknown Map

In spite of larger £, there is no difference:

X is all pairs (g, ) in which (g, q,) € Eand £ € £.
We can write X C R? x St x &.

X is enormous! But that is fine here. We do not compute directly on it.

Note: Putting useful probability densities over X might be difficult or
impossible.

X is usually not a manifold (doesn't look like C-space)
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Placing Bodies into Environments

Place a body B into F.

Each could have a configuration space SFE/(2), so that we transform it:
B(q:lta Q-ya (19) C E

Structure and Synthesis of Robot Motion
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Sensor Mapping

Let X be any physical state space.

Let Y denote the observation space, which is the set of all possible sensor
observations.

A virtual sensor is defined by a sensor mapping:
h: X —Y.
Note similarity to transfer function for physical sensors.

When = € X, the sensor instantaneously observes y = h(z) € Y.

26/03/2012 Structure and Synthesis of Robot Motion
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Sensor Mapping: Extreme Examples

26/03/2012

The weakest possible sensor

DUMMY SENSOR:
Y ={0}and h(z) =0forallz € X

The strongest possible sensor(s)

IDENTITY SENSOR:
Y=Xandy=h(z) ==z

Just give me the statel

BIJECTIVE SENSOR:
h is bijective function from X to Y.
2 can be reconstructed as = = h ™! (y).

Structure and Synthesis of Robot Motion
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Projection Sensor

PROJECTION SENSOR:
Choose some components of X .

X =R*andz = (21,79, 23) € X.
Y = R?

y=h(x)=(x,x)

X =R?x S!
A state is (¢, ¢y, qp) € X.

Position sensor: Observes (.. q.y) and leaves gy unknown.

|deal compass: Observes gy and leaves g, and g, unknown.

Structure and Synthesis of Robot Motion
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More Interesting: Directional Depth

DIRECTIONAL DEPTH SENSOR:

ha(p.0, E) = [|p — b(x)]|

Let p = (q.. qy) and # = gg (shorthand notation)
b(x) is point on boundary O F hit by ray.

26/03/2012 Structure and Synthesis of Robot Motion
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Omnidirectional Version

Like an infinite-dimensional vector of observations

i

OMNIDIRECTIONAL DEPTH SENSOR:
hoda(x) =y, inwhich 7 : ST — [0, 00)

Y(@) = hody(p, 0, E).

Structure and Synthesis of Robot Motion
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Understanding the Omnidirectional Sensor

[

How does the observation 3 : ST — [0, o) look?
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New Category: Detection Sensor

Detection
region

N .

Is a body in the field of view, or detection region?

26/03/2012 Structure and Synthesis of Robot Motion
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Relational Sensors

Consider any relation R on the set of all bodies.

For a pair of bodies, B1 and Bs, examples of R(B1, B2) are:

B B;isin front of Bo
B is to the left of By
B is on top of B>
B is closer than By
B is bigger than Bs.

More precisely, Let I7,.(7, j) mean B; is related to B;, when the system is
at state .

ldea is due to Guibas
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Gap Sensor

Report information obtained along the boundary of V'(¢), which is
denoted as OV (q)

Two qualitatively different parts of 9V (q):

1. A piece of a body boundary
2. A gap (discontinuity in depth)

A gap sensor reports how these parts alternate.

26/03/2012 Structure and Synthesis of Robot Motion
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Simple Gap Sensor

gg - -

Ay
Y01

SIMPLE GAP SENSOR:
Alternating between boundary and gaps:

y = (Bo, 91. Bo, g2. Bo. g3, Bo. 94, Bo. g5)

Equivalently:
Yy = (gla g2. 93, g4, 95)

Structure and Synthesis of Robot Motion
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Multibody Gap Sensing

MULIBODY GAP SENSOR:
y = (G1,91, By, 92, Bs, g3, By, 94, G, g5. B3, g6, B2, g7, B1)

Structure and Synthesis of Robot Motion
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So what?!

Structure and Synthesis of Robot Motion
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Can we Build “Filters”?

There are two general kinds of filters:

1. Spatial: Combining simultaneous observations from multiple sensors.

2. Temporal: Incrementally incorporating observations from a sensor at
discrete stages.

Of course, we can make spatio-temporal filters.
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Triangulation: Preimage Intersection

Consider any n sensor mappings h; : X — Y for 7z from 1 to n.

The friangulation of a set of the observations v1,. . .,y,, is:

A(yla S -ﬂy'n,) - hl_l(yl) M ]32_1(?/2) AEERNA h‘:.;l('yn-)a

which is a subset of X .

26/03/2012 Structure and Synthesis of Robot Motion
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Triangulation in Stereo Vision

Image -7
Plane =7
—=4z” B S _
- = “:Ei(;ﬂ}lag‘e Object
- Pinhole™ ~ 77—~ o
One camera Triangulation

Observation: Object location in image plane
Preimages: Infinite rays

Triangulation: A(y1, vy2) is a point.

26/03/2012 Structure and Synthesis of Robot Motion
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Relation to Linear Algebra

Precisely how does information improve from multiple observations?

Linear case: y; = C;x, with Y = R and X = R".
Assume C'; has rank k.
Each h,;l(yi) is a n — k-dimensional hyperplane through the origin of X .

A(y1,...,yy,) is the intersection of hyperplanes.

Preimage dimension and linear independent are crucial.

Nonlinear case: Similar, but tricky due to geometry.
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Handling Disturbances

Nondeterministic disturbances:

N

Probabilistic disturbances:

~ plyilz)p(y2|x) - - plyn|z)p(x)

p(xlyt, . o yn) =
p(yla <o sy’n)
The least squares optimization problem:
n
e d-Q s
%{12 2. i)
1=
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Over State-Time Space

Recall state-time space Z = X x T

A sensorish: /Z — Y.

Triangulation intersections chunks of state-time space:

Ay, .. yn) = hT y) N hg ) NN b (),

7 Ve r \

\ h;l{h:/h;(yz) /
{4

\ o / /

4 /Q\( /

g (us)|

Important example: GPS simultaneously estimates position and time.

26/03/2012 Structure and Synthesis of Robot Motion
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Filtering Over Time

Given state space X andsensorh : X — Y.
Let = : [0,t] — X be a state trajectory.

Let 7 : |0,t] — Y be an observation history.

When presented with v/, there are two fundamental questions:

1. What is the set of state trajectories z : |0, ¢] — X that might have

occurred?
2. What is the set of possible current states, z(t)?

26/03/2012 Structure and Synthesis of Robot Motion
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Time Parameterized Sensor Mapping

Apply h : X — Y forevery t’ € [0, 1].
Every t’ € [0, t] yields some observation y(t’) = h(Z(t)).
Let X be all state trajectories.

Let Y be all possible observation histories.

Applying h over |0, t|, we obtain the induced map:

i~

H:X—-Y

26/03/2012 Structure and Synthesis of Robot Motion
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Answers to Our Questions

This preimage answers 1st question:

H Yy ={teX|y=H)}

“all state trajectories that could have produced ¥

Answer to 2nd question:

{x € X | 3% € H () such that #(t) = x}

“all possible current states, considering the history 3"

26/03/2012 Structure and Synthesis of Robot Motion
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Moving On: Nondeterministic Filters

26/03/2012

Models: i : X — pow(Y)and F(xp,up) € X
The I-space: 7,4t = pow(X)
Initial I-state: X1 C X

The filter:
X1 (1) = O( Xk (k) s ke, Yrt1)

After first observation 11 :

Xi(m) = X1(yn) = Xinh™ )

(Intersect initial constraint with observation preimage.)

Structure and Synthesis of Robot Motion
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Operation of Nondeterministic Filters

Inductively, X (1) is given.

Determine X 1(7g+1) using X (7)), wr, and yi+1.

Using up.,
Xr1 (M, ug) = U F(xp, ug).
rrEXk(NK)
/ N
\J
Al X1 (e, wr)
Using i+ 1,

Xﬁ;+1(’f}’k+1) — Xk‘—l—l(nk‘aukayk—i—l) — Xk+l(7]ka ’Ufk-) M h_l(yk;ﬂ)-

26/03/2012 Structure and Synthesis of Robot Motion
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Combinatorial Filters

Now we attempt to reduce filter complexity.
Introducing combinatorial filters

Three examples:

1. Obstacles and beams
2. Shadow information spaces
3. Gap navigation trees

Many, many more should be possible from the numerous virtual sensor
models already given.
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Obstacles and Beams

A point body moves in a known environment.
X = F Cc R? and § = chabdecefe

What state trajectories are possible?

Structure and Synthesis of Robot Motion

57



Multigraph Representation

Let G be a multigraph:

B There is one vertex for every € R.

B A directed edge is made from 1 € R tor9 € R if and only if the body
can cross a single beam to go from 71 to 7.

B Each edge is labeled with the beam label and the direction, if needed.

Two beams The multigraph GG
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Nondeterministic Region Filter

Let 7 = pow(R) and 1o = Ry, an initial region set.

Filter:
Rk+1 — (.f’(Rka 'yk+1)

In particular:

1. Lethk = 0and R = Ry.

2. LetRp 1= 0.

3. For vertex in R} and outgoing edge that matches ;. 1, insert the
destination vertex/region into Ry 1.

4. Increment k, and go to Step 2.

26/03/2012 Structure and Synthesis of Robot Motion
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Two Bodies

In a given annulus F, we have two bodies, yielding X = E? C R*.

There are three disjoint, distinguishable, undirected beams a, b, c.

There are 3 regions, and nine combinations:
(1, 1), (1, 2), (1,3), (2, 1), (2,2), (2, 3), (3, 1), (3, 2), and (3,3)

Structure and Synthesis of Robot Motion
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Two-bit Filter

Use a task to reduce complexity MUCH further.
Task: Determine whether the bodies in a room together?
b

b
. e

The previous |-space would have 511 |-states.
Here, the I-space is: Z = {1, D, Dy, D.}
Filter: tx = O(tk—1,Yk)

a

Structure and Synthesis of Robot Motion
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Multi-Body Filter

What if more than one body move around?
For n bodies, X C R2".

let R" = Rx Rx--- xR
l-space: 7 = pow(R")
1T

Compute the multigraph &, and form a product G".

Vertices of G'* are region assignments (71, ....7,).

Edges of G" correspond to possible transitions.

Extend the one-body filter directly to G™.
Problem: Number of vertices is exponential in n.
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Challenge




Q3: Asymmetry in Strategic Settings

* Abigissue! Occurs in numerous robotics problems such as
human-robot interactions

Modelling this is an on-going challenge

 Some model from social sciences, e.g., market for lemons
— Decisions with ‘quality uncertainty’
— One person (seller) knows more than another (buyer)
— What will be interaction look like? What should they do?

26/03/2012 Structure and Synthesis of Robot Motion
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