
Structure and Synthesis of Robot Motion

Making Sense of Sensorimotor Systems

Subramanian Ramamoorthy
School of Informatics

2 February, 2012

Recap: Bootstrap Learning Framework

• Learn models of robot and
environment with no initial
knowledge of what sensors
and actuators are doing

• Many learning methods
begin this way, e.g., RL, but
the goal here is to construct
a representation
incrementally and
continually as well

02/02/2012 2

D. Pierce, B.J. Kuipers, Map learning with un-interpreted sensors and effectors,
Artificial Intelligence 91:169-227, 1997.

Example Trace

02/02/2012 3

d1 d2

Extending the Group Notion

We can reason transitively about similarity:

So, a wandering trace might yield something like this as groups:

02/02/2012 4

After Transitive Closure

02/02/2012 5

Getting at Structure of Array

• Task is to find an assignment of positions (in space) to
elements that captures the structure of the array as reflected
in distance metric d1.

• Distance between positions in image ≈ distance between
elements according to d1.

• This is a constraint satisfaction problem: n sensor elements
yield n(n-1)/2 constraints.

• Solve by metric scaling:

02/02/2012 6

Structural Model of Distance Array

02/02/2012 7

Key Idea: Language of Features

• We want a critter to develop an understanding of the world in
order to act at the level of navigation, etc. How does it know
what to do?

• The critter tries to develop an abstract interface – a sequence
of increasingly sophisticated sensorimotor interfaces

• Key to this is the definition of features:
– Sensory side: Re-describe sensor readings into higher level signals

– Motor side: Define new control laws at these levels

• Based on these features, the critter adopts a generate and
test approach

02/02/2012 8

On Features

They provide:

• Change of representation: Although the initial vector of
distance readings provides the same information,
representing it as a 2D ring enables new control possibilities

• Focus of attention: If a lot of things are happening
(information overload, noise) the critter can define a few
salient features to be tracked, e.g., nearest distance reading

• Dimensionality reduction: In the interest of keeping
computation tractable, it is key to limit the dimensionality to
the effective dimensionality of the world/problem

02/02/2012 9

Features enable Operators

• e.g., by defining a vector or matrix grouping, we get to define
linear algebraic operations

• More interesting are image operators, e.g., motion detector

 First, recall our notion of an ‘image’

02/02/2012 10

More Features

• In general, one could define more sophisticated features
building on the elementary primitives

• Here is a field element that captures motion at each point in
an image

02/02/2012 11

A Motion Operator

• Detection of motion requires spatial and temporal
information: both are available in the image features

• We can think of a sequence of images in terms of an intensity
function E(p,t) – maps image positions to values over time

• This function has a spatial and time derivative
– Changes in these define something about environment (e.g., edges)

• Based on this motivation, one can understand the optical flow
operation in image processing:

• Could also just pay attention to

02/02/2012 12

Instantaneous Motion Vector Field

 Building on the above, we can define such a field where we
compute an averaged mvf for each element of the image

02/02/2012 13

Sequence so far… on the sensor side

02/02/2012 14

Learning on the Motor side

Summary of learning method:

• Discretize the space of motion control vectors

• Compute average motion vector fields

• Apply PCA

• Identify primitive actions

• Define a new abstract interface using these actions

02/02/2012 15

Average Motion Vector Field

02/02/2012 16

PCA over AMVFs

02/02/2012 17

Defining New Primitive Actions

• We now have two things:
– AMVFs associated with actions that were tried

– Eigenvectors that form a basis for these AMVFs

• We define primitive actions by looking for actions that can
enforce motion along the eigenvectors

• If an eigenvector and AMVF have an angle of 0 between them,
they use same actions (1800 corresponds to the opposite)

• By finding AMVFs that are within 450, we can define ui+ and ui-
that are useful to enforce motion in that direction

• From this, we define an abstract interface (with turn & travel)

02/02/2012 18

AMVF for the Roving Eye

02/02/2012 19

Eigenvectors for the Roving Eye

02/02/2012 20

Moving on, our game plan

 Knowing how to abstract on both the sensor and motor side,
our game plan will be to generate candidate states and
features – looking for regularities that can be explained using
these generated entities.

 For instance, we can define a local state variable as:

02/02/2012 21

Hierarchy of Features and Generators

02/02/2012 22

Looking for Action Models
- Action Independent

02/02/2012 23

Looking for Action Models
- Action Dependent

02/02/2012 24

Context Dependent Models

02/02/2012 25

After all this, we finally have a language for talking to a mobile robot!

Defining Behaviours

 Consider the following
interface to define a
behaviour – including
initialization signal and
applicability readout.

Example: homing behaviour

02/02/2012 26

Open-loop Path Following Behaviour

02/02/2012 27

Closed-loop Path Following

02/02/2012 28

What does all this enable?

02/02/2012 29

Original motivation: Get from uninterpreted sensors and effectors
 to a finite state world where FSA learning, etc. is possible

02/02/2012 30

Can this work for more complex worlds?

Consider the case where we have more elaborate sensor arrays

 - Image a sensorized Stanford bunny!

02/02/2012 31

Would d1 and d2 suffice? Why?

Useful distance:

Sensor Correlation Distance Embedding

Three steps*:

• The sensor correlation distance is computed between pairs of
sensors from a set of sensor observations.

• Using the sensor correlation distance, the k-nearest neighbors for
each sensor are selected to form a sparse set of distance
constraints.

• The fast maximum variance unfolding algorithm is applied to the
sparse constraints to generate a spatial embedding of the sensors
that approximately preserves the selected sensor correlation
distances.

 * J. Modayil, Discovering Sensor Space: Constructing Spatial Embeddings That Explain
Sensor Correlations, In Proc. Intl. Conf. Development and Learning 2010

02/02/2012 32

Setting up the SCD

• Assuming m unit-normalized readings zi
t,

• Model covariance between two channels as a Gaussian
Process model:

• Some useful facts about correlation and covariance:

02/02/2012 33

Systematic variance Observation noise

Setting up the SCD

 Focussing only on covariance between observations at the
same time instant, ignoring observation noise,

 Using the previous identities to simply and rewrite:

02/02/2012 34

Isometric Embedding

• Use a technique called fast maximum variance unfolding*

• Objective of embedding is to find a redescription that
preserves a local distance of the form

• By using the inner product, , this can be rewritten:

• By softening constraints, this gives an optimization problem:

02/02/2012 35

* K. Weinberger, F. Sha, Q. Zhu, and L. Saul, Graph Laplacian regularization for large-scale
semidefinite programming, Neural Information Processing Systems 19, 2007.

Understanding the Optimization Problem

• Maximize the spread of the embedded points while
minimizing violations of distance constraints

• Of the other constraints, the first one centers data points

• [Technical] Last constraint makes sure we have semidefinite or
Gramian matrix – related to inner product properties

• [Technical] There are a lot of constraints (as before) but one can
simplify the problem using Laplacian eigenvector approximation of
the sparse connectivity graph

02/02/2012 36

SCD Embedding Algorithm in Action

02/02/2012 37

Typical image: SCD Embedding
reconstruction:

Multiple Levels of Knowledge

02/02/2012 38

Spatial Semantic Hierarchy

• A model of knowledge of large scale space consisting of
multiple interacting representations
– Inspired by the human cognitive map, a model of the same

– Method for robot exploration and map building

• Separates and utilizes everything from control level to
topology level

• Key idea:

 Quantitative knowledge at the control, causal and topological
levels supports a “patchwork map” of local geometric frames
of reference linked by causal and topological connections.

02/02/2012 39

A Lattice for Spatial Knowledge

02/02/2012 40

Control Level

 Provides local hill-climbing and trajectory following: allowing a
robot to get to and hold a distinctive state

02/02/2012 41

Lifting to the Causal Level

02/02/2012 42

Exploring and Representing an Office

02/02/2012 43

Topology Level – in terms of relations

02/02/2012 44

Some Open Questions – Discuss!

• The SCD distance idea shows that sensory features can be
extended using state of the art machine learning algorithms –
how does one extend control actions in a similar sense?

• Space is a foundational part of our common sense and many
aspects of the abstraction in SSH utilize the naturalness of it.
What happens when we pass to more complex “spaces”?

• To what extent can this kind of learning be achieved in a
continually changing world?

02/02/2012 45

