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Recap: Bootstrap Learning Framework

Learn models of robot and
environment with no initial
knowledge of what sensors ( w

and actuators are doing

Many learning methods . 31
begin this way, e.g., RL, but [nall .| -(£)-a0
the goal here is to construct Sensory input Control

a representation L J
incrementally and

. Robot & World
continually as well

D. Pierce, B.J. Kuipers, Map learning with un-interpreted sensors and effectors,
Artificial Intelligence 91:169-227, 1997.
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Example Trace

i~ j if dk‘,'j < min{E;_-‘;,Ek‘j}.

Epi = 2 min{dk,fj}.
J
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Extending the Group Notion

We can reason transitively about similarity:
i~ iff i jVvIk (i~ k) Ak~ ).

So, a wandering trace might yield something like this as groups:

(0122223)(012323)(01234)(12345)(23456) (34567)
(4567)(56789) (78910) (7891011) (89101112) (91011 12 13)
(10 11 12 13 14) (11 12 13 14 15) (12 13 14 15 16) (13 14 15 16 17)
(14 15 16 17 18) (15 16 17 18 19) (16 17 18 19) (17 18 19 21) (20)
(19 21 22 23) (02122 23) (012122 23) (24) (25) (26) (27) (23).
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After Transitive Closure

(01234567891011121314151617 18 19 21 22 23)
(20) defective

(24) battery voltage
(25) east

(26) north

(27) west

(28) south
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Getting at Structure of Array

Task is to find an assignment of positions (in space) to

elements that captures the structure of the array as reflected
in distance metric d,.

Distance between positions in image = distance between
elements according to d,.

| (pos yi) — (pos y;) || = di

* This is a constraint satisfaction problem: n sensor elements
vield n(n-1)/2 constraints.

* Solve by metric scaling: E= %Z(H(pas yi) — (posy;)|| —d;)*.
ij
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Structural Model of Distance Array

Metric scaling eigenvalues
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Key Idea: Language of Features

We want a critter to develop an understanding of the world in
order to act at the level of navigation, etc. How does it know
what to do?

The critter tries to develop an abstract interface — a sequence
of increasingly sophisticated sensorimotor interfaces

Key to this is the definition of features:

— Sensory side: Re-describe sensor readings into higher level signals

— Motor side: Define new control laws at these levels

Based on these features, the critter adopts a generate and
test approach



On Features

They provide:

* Change of representation: Although the initial vector of
distance readings provides the same information,
representing it as a 2D ring enables new control possibilities

* Focus of attention: If a lot of things are happening
(information overload, noise) the critter can define a few
salient features to be tracked, e.g., nearest distance reading

* Dimensionality reduction: In the interest of keeping
computation tractable, it is key to limit the dimensionality to
the effective dimensionality of the world/problem



Features enable Operators

e e.g., by defining a vector or matrix grouping, we get to define
linear algebraic operations

* More interesting are image operators, e.g., motion detector
First, recall our notion of an ‘image’
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Figure 2.5: a) An example of a two-dimensional image element of type (S.87). The position vector is
represented by the arrow; the value is represented by the size of the disk. b) An example of an image of type
(S, S, a sequence of image-elements. ) An example of a focused image. The circled elements are local
minima and have been assigned a strength of 1.



More Features

In general, one could define more sophisticated features
building on the elementary primitives

Here is a field element that captures motion at each point in
an image
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Ficure 2.6: a) An example of a field element of type (87, 87). The position and value vectors are both
g [ ype : e ve
represented by arrows. b) An example of a field, a sequence of field-elements, of type (87, 87)12.



A Motion Operator

Detection of motion requires spatial and temporal
information: both are available in the image features

We can think of a sequence of images in terms of an intensity
function E(p,t) — maps image positions to values over time

This function has a spatial and time derivative
— Changes in these define something about environment (e.g., edges)

Based on this motivation, one can understand the optical flow
operation in image processing:

. i_'
v F Ly - By

|Fpl] [ Ep]] |Fp|?

—_

Could also just pay attentionto v = -1 I,



Instantaneous Motion Vector Field

Building on the above, we can define such a field where we
compute an averaged mvf for each element of the image

pos(motion ») = pos
(val(motion 1)), = Z vii/llps; |
jembrs o
.
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Sequence so far... on the sensor side
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Learning on the Motor side

Summary of learning method:

* Discretize the space of motion control vectors
 Compute average motion vector fields

* Apply PCA

* |dentify primitive actions

* Define a new abstract interface using these actions
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Average Motion Vector Field

aref, = p ((motion ») (= u u]]
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Figure 5.1: Examples of average motion vector fields {amuf’s) and their associated motor control vectors.

An amuf associates an average local motion vector with each position in the image {see Figure 4.8). The

examples in this section were all produced in an experiment involving the robot and environment described
in Section 4.1.

02/02/2012
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PCA over AMVFs

b

“_’7// | "H-f'/l ’ ~—

u'= (-0.66 0.74) ul= (0.74 0.6G8)

Figure 5.3: The first four eigenvectors and the standard deviations of the associated principal components
[or the space of average motion vector fields, The first corresponds to a pure rotation motion and the second
corresponds to a forward translation motion. (The top-left elements in these diagrams are associated with
the robot’s front sensor sg). The robot’s motor apparatus can produce the first two effects directly using the
motor control vectors shown.
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Defining New Primitive Actions

We now have two things:
— AMVFs associated with actions that were tried

— Eigenvectors that form a basis for these AMVFs

We define primitive actions by looking for actions that can
enforce motion along the eigenvectors

If an eigenvector and AMVF have an angle of 0 between them,
they use same actions (180° corresponds to the opposite)

By finding AMVFs that are within 45°, we can define u'* and u*
that are useful to enforce motion in that direction

From this, we define an abstract interface (with turn & travel)

u— uyu’ + uyu



AMVF for the Roving Eye
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Ficure 5.6: Examples of average motion vector fields and their associated motor control vectors for the
roving eye.
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Eigenvectors for the Roving Eye

(-0.16 -0.99 -0.04)

Figure 5.7: The first four eigenvectors and standard deviations for the roving eye,
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Moving on, our game plan

Knowing how to abstract on both the sensor and motor side,
our game plan will be to generate candidate states and
features — looking for regularities that can be explained using

these generated entities.
For instance, we can define a local state variable as:

Let u be the vector of control signals w;. A scalar feature y;
= g el
is a local state variable if the effect of the control signals on

y; can be approximated locally by

Y —my; -u (= Z Niggt) (G.1)
j

where m; is nonzero.
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Hierarchy of Features and Generators

02/02/2012
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o~ ﬁi&\ﬂ
oo il == 1 [0

Fig. 9. The complete hierarchy of features and generators in the leaming agent’s feature-learning process used
to praduce candidate local state variables. The feature generators are shown in bold face; the feature types are
shown in italics.
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Looking for Action Models
- Action Independent

-0,010 -0, 082 0,023
T e
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EIII!LHIn ‘ II -5:;
Asy vs. At Asss vs, At fovin vs. Al

Figure 6.2: Plots of Ay vs. At for three features. Whenever a new motor control vector is used, Ay; and At
are reset to 0. These are used to see 116 1s possible to predict the behavior of the feature independently of the
motor control vector. Here, fmen is short for s-gl-vm-foman-tr-val. The numbers shown are the correlations

between Ay and At
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Looking for Action Models

- Action Dependent

-0,941

Asg vs. up Asy vs. ug Al

0,031

Almen vs. un Al

0,028

Nlmen vs. w AL

Figure 6.3: Plots of Ay vs. w; At for two features and two primitive actions. These are used to see if it is

possible to predict the behavior of the feature as a function of the motor control vector.

02/02/2012
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Context Dependent Models

-0,985 0,234 0,99
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Figure G.4: Example plots of Ay vse wg At for the s-gl-om-tmm-tr-val feature for three different contexts.
These are used to see if it is possible to predict the behavior of the feature as a function of the motor control
vector and the current context.,

Yi = Mgty 10 255 = &

Adfter all this, we finally have a Language for talking to a wobile robot!
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Defining Behaviours

Consider the following

interface to define a
behaviour —including

initialization signal and

Example: homing behaviour

applicability readout.

init app done

sensory

m

subbehaviors
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input” Behavior | —— = out

For each context z;; = &,
app(k) = max{0, 2rj;, — 1}
output (k) =  uij u’
Hoo— Ui
done = v - il < 0.1
Yy
where
2 5 W_
Uiy — Edp /{ ot
ik Wi ig .
€ = Y — Y-
D vy
Ooﬁ
o]
o
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Open-loop Path Following Behaviour

epp = —
oulpul = LL'"'—E s’

yr = i

done = ——— > 0.4
Yi

vV (a new behavior becomes applicable)

Figure 7.6: Two examples of open-loop path-following behaviors. (a) A behavior based on a” (for turning)

: (advancing) and constraint y; = »7 s applicable whenever = »7 and the
zij = 18) since in this context u

and constraint g = y7 is applicable whenever g = y7 since u" never changes the value of ;. (b) A behavio
based on primitive action u
robot’s heading is parallel to the wall on its left {i.e. L keeps the error

£ — Ny oy LEAr 2ero.

02/02/2012
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Closed-loop Path Following

I
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What does all this enable?

Figure 7.10: Exploring a simple world at three levels of competence. (a) The robot wanders randomly while
learning a model of its sensorimotor apparatus. (b) The robot explores by randomly choosing applicable
homing and open-loop path-following behaviors based on the static action model while learning the dynamic
action model. {¢) The robot explores by randomly choosing applicable homing and closed-loop path-following
behaviors based on the dynamic action model.

Original motivation: Get from uninterpreted sensors and effectors
to a finite state world where FSA learning, etc. is possible
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Can this work for more complex worlds?

Consider the case where we have more elaborate sensor arrays
- Image a sensorized Stanford bunny!

Would d, and d, suffice? Why?

Useful distance: corr(z’, 27) oc exp(—||e(i) — e(5)|]?)

02/02/2012
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Sensor Correlation Distance Embedding

Three steps™:

* The sensor correlation distance is computed between pairs of
sensors from a set of sensor observations.

e Using the sensor correlation distance, the k-nearest neighbors for
each sensor are selected to form a sparse set of distance
constraints.

* The fast maximum variance unfolding algorithm is applied to the
sparse constraints to generate a spatial embedding of the sensors
that approximately preserves the selected sensor correlation
distances.

* J. Modayil, Discovering Sensor Space: Constructing Spatial Embeddings That Explain
Sensor Correlations, In Proc. Intl. Conf. Development and Learning 2010
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Setting up the SCD

* Assuming m unit-normalized readings Z',,

Model covariance between two channels as a Gaussian
Process model:

a::m-’E(Z;'. Zﬂ) = crfr exp (—ds(i:j)z — dr(t, 'Hj2)+§ilj§¢?ugi.
Systematic variance Observation noise

Some useful facts about correlation and covariance:

02/02/2012
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Setting up the SCD

Focussing only on covariance between observations at the
same time instant, ignoring observation noise,

covp(Z], Zf) = cr? exp(—ds(i, j)?)

ds(i,j) = \/— In(covg(Z;, Zf]lfcrfr).

Using the previous identities to simply and rewrite:

T
. 1 i
SCD(i,j) = JIH(T E zizl).
t=1

02/02/2012
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Isometric Embedding

e Use a technique called fast maximum variance unfolding*

* Objective of embedding is to find a redescription that
preserves a local distance of the form |z — =;(* = dZ;.

* By using the inner product, X:; =<z, z;>, this can be rewritten:
Xii — 2Xi5 + X5 — di| = 0,
* By softening constraints, this gives an optimization problem:

Maximize tr(X) —v ), (X —2Xi; + Xj; — t:e’?“‘_r-)E
subject to (1) 24 Xij =0 and (%)X = 0

* K. Weinberger, F. Sha, Q. Zhu, and L. Saul, Graph Laplacian regularization for large-scale
semidefinite programming, Neural Information Processing Systems 19, 2007.
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Understanding the Optimization Problem

Maximize tr(X) —v ij(Xi,; —2Xi; + X5 — d?;)g
subject to (i)zt.j X;; =0and (i) X = 0

* Maximize the spread of the embedded points while
minimizing violations of distance constraints

* Of the other constraints, the first one centers data points

* [Technical] Last constraint makes sure we have semidefinite or
Gramian matrix — related to inner product properties

* [Technical] There are a lot of constraints (as before) but one can
simplify the problem using Laplacian eigenvector approximation of
the sparse connectivity graph

b
€Li == Z,_—t=1 Qt’aya-
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SCD Embedding Algorithm in Action

Typical image: SCD Embedding
reconstruction:
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Multiple Levels of Knowledge

Metrical Level T35
15 O~ 15
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Control Level L‘ H

Sensorimotor Level ut

f
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Local state variables primitive actions
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Spatial Semantic Hierarchy

A model of knowledge of large scale space consisting of
multiple interacting representations
— Inspired by the human cognitive map, a model of the same
— Method for robot exploration and map building

e Separates and utilizes everything from control level to
topology level
* Key idea:

Quantitative knowledge at the control, causal and topological
levels supports a “patchwork map” of local geometric frames
of reference linked by causal and topological connections.



A Lattice for Spatial Knowledge

Qualitative Quantitative
Continuous Analog
Attributes Model
Sensory names Sensor values
Control laws " ~ Local 2-D
Control appropriateness geometry

termination

Views
Causal Actions
Causal schemas

_  u Tumangle
Travel distance

Places .
Topological e Local headings
pOToRt Paths .. 1-D distances
Connectivity
Order
Y
Metrical Global 2-D

geometry

Fig. 1. The distinct representations of the Spatial Semantic Hierarchy. Closed-headed arrows represent
dependencies: open-headed arrows represent potential information flow without dependency.
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Control Level

Provides local hill-climbing and trajectory following: allowing a
robot to get to and hold a distinctive state

[//Atdistinctive\ select TF law / Trajeclory- \l
'\ state J ’K following J
reach termination
fixed-point detected
( Hill- \ select HC law ( Enter place \I
\_  climbing / \\ neighborhood |
u b'e X
o B(x.u) 4
u S b.¢
xi(s) - U(x) e
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Lifting to the Causal Level

N/ |
\ / Trajectory-following \ .
-~
/—W\/\/\ Hill-
climbing —
O —_— —_
dsl ds2 ~
N —
/ ~
Ve
/o AR
A
O O
V1 V2

Fig. 4. Abstraction from controlled behavior to causal link (Vq, A, V5).

declarative: holds(V, so) A holds(V', result(A, so))
procedural: holds(V, now) = do(A, now).
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Exploring an

02/02/2012

d Representing an Office
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Topology Level — in terms of relations

at(view, place)

along(view, path, dir)
on(place, path)
order(path, placel , place?, dir)
right of (path, dir, region)
left_of (path, dir, region)

in( place, region)

02/02/2012

P5(Symm-Eq-3)
E4(Midline)

E5(Midline)

e —

P4(Temp-Disc)
E3(Left-Wall)

E23(Right-Wall)

P3(Symm-Eq-2) s E2(Left-Wall)
NS El(Left-Wall)

|

P6(Symm-Eq-3)
E6(Midline)
P7(Temp-Disc)

E7(Left-Wall)

P2(Symm-Eq-2)

view 1s seen at place

-—

view 1s seen along path in direction dir

place 1s on path

Pl(Temp-Disc)

the order on path from placel to place? is dir.

path, facing direction dir, has region

on 1its right (respectively left)

place 1s 1n region.
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Some Open Questions — Discuss!

 The SCD distance idea shows that sensory features can be
extended using state of the art machine learning algorithms —
how does one extend control actions in a similar sense?

e Space is a foundational part of our common sense and many
aspects of the abstraction in SSH utilize the naturalness of it.
What happens when we pass to more complex “spaces”?

* To what extent can this kind of learning be achieved in a
continually changing world?



