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Recap: Bootstrap Learning Framework 

• Learn models of robot and 
environment with no initial 
knowledge of what sensors 
and actuators are doing 

• Many learning methods 
begin this way, e.g., RL, but 
the goal here is to construct 
a representation 
incrementally and 
continually as well 
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D. Pierce, B.J. Kuipers, Map learning with un-interpreted sensors and effectors,  
Artificial Intelligence 91:169-227, 1997. 
 



Example Trace 
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Extending the Group Notion 

We can reason transitively about similarity: 

 

 

So, a wandering trace might yield something like this as groups: 
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After Transitive Closure 
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Getting at Structure of Array 

• Task is to find an assignment of positions (in space) to 
elements that captures the structure of the array as reflected 
in distance metric d1. 

• Distance between positions in image ≈ distance between 
elements according to d1. 

 

 

• This is a constraint satisfaction problem: n sensor elements 
yield n(n-1)/2 constraints. 

• Solve by metric scaling: 
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Structural Model of Distance Array 
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Key Idea: Language of Features 

• We want a critter to develop an understanding of the world in 
order to act at the level of navigation, etc. How does it know 
what to do? 

• The critter tries to develop an abstract interface – a sequence 
of increasingly sophisticated sensorimotor interfaces 

• Key to this is the definition of features: 
– Sensory side: Re-describe sensor readings into higher level signals 

– Motor side: Define new control laws at these levels 

• Based on these features, the critter adopts a generate and 
test approach 
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On Features 

They provide: 

• Change of representation: Although the initial vector of 
distance readings provides the same information, 
representing it as a 2D ring enables new control possibilities 

• Focus of attention: If a lot of things are happening 
(information overload, noise) the critter can define a few 
salient features to be tracked, e.g., nearest distance reading 

• Dimensionality reduction: In the interest of keeping 
computation tractable, it is key to limit the dimensionality to 
the effective dimensionality of the world/problem 
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Features enable Operators 

• e.g., by defining a vector or matrix grouping, we get to define 
linear algebraic operations 

• More interesting are image operators, e.g., motion detector 

 First, recall our notion of an ‘image’ 
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More Features 

• In general, one could define more sophisticated features 
building on the elementary primitives 

• Here is a field element that captures motion at each point in 
an image 
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A Motion Operator 

• Detection of motion requires spatial and temporal 
information: both are available in the image features 

• We can think of a sequence of images in terms of an intensity 
function E(p,t) – maps image positions to values over time 

• This function has a spatial and time derivative 
– Changes in these define something about environment (e.g., edges) 

• Based on this motivation, one can understand the optical flow 
operation in image processing: 

 

 

• Could also just pay attention to  
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Instantaneous Motion Vector Field 

 Building on the above, we can define such a field where we 
compute an averaged mvf for each element of the image 
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Sequence so far… on the sensor side 
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Learning on the Motor side 

Summary of learning method: 

• Discretize the space of motion control vectors 

• Compute average motion vector fields 

• Apply PCA 

• Identify primitive actions 

• Define a new abstract interface using these actions 
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Average Motion Vector Field 
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PCA over AMVFs 
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Defining New Primitive Actions 

• We now have two things: 
– AMVFs associated with actions that were tried 

– Eigenvectors that form a basis for these AMVFs 

• We define primitive actions by looking for actions that can 
enforce motion along the eigenvectors 

• If an eigenvector and AMVF have an angle of 0 between them, 
they use same actions (1800 corresponds to the opposite) 

• By finding AMVFs that are within 450, we can define ui+ and ui- 
that are useful to enforce motion in that direction 

• From this, we define an abstract interface (with turn & travel) 
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AMVF for the Roving Eye 
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Eigenvectors for the Roving Eye 
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Moving on, our game plan 

 Knowing how to abstract on both the sensor and motor side, 
our game plan will be to generate candidate states and 
features – looking for regularities that can be explained using 
these generated entities. 

 For instance, we can define a local state variable as: 
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Hierarchy of Features and Generators 
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Looking for Action Models 
- Action Independent 
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Looking for Action Models 
- Action Dependent 
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Context Dependent Models 
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After all this, we finally have a language for talking to a mobile robot! 



Defining Behaviours 

 Consider the following 
interface to define a 
behaviour – including 
initialization signal and 
applicability readout. 

Example: homing behaviour 
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Open-loop Path Following Behaviour 
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Closed-loop Path Following 
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What does all this enable? 
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Original motivation: Get from uninterpreted sensors and effectors 
 to a finite state world where FSA learning, etc. is possible 
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Can this work for more complex worlds? 

Consider the case where we have more elaborate sensor arrays 

 - Image a sensorized Stanford bunny! 
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Would d1 and d2 suffice? Why? 

Useful distance: 



Sensor Correlation Distance Embedding 

Three steps*: 

• The sensor correlation distance is computed between pairs of 
sensors from a set of sensor observations. 

• Using the sensor correlation distance, the k-nearest neighbors for 
each sensor are selected to form a sparse set of distance 
constraints. 

• The fast maximum variance unfolding algorithm is applied to the 
sparse constraints to generate a spatial embedding of the sensors 
that approximately preserves the selected sensor correlation 
distances. 

 

 * J. Modayil, Discovering Sensor Space: Constructing Spatial Embeddings That Explain 
Sensor Correlations, In Proc. Intl. Conf. Development and Learning 2010 

02/02/2012 32 



Setting up the SCD 

• Assuming m unit-normalized readings zi
t, 

• Model covariance between two channels as a Gaussian 
Process model:  

 

 

 

• Some useful facts about correlation and covariance: 
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Systematic variance Observation noise 



Setting up the SCD 

 Focussing only on covariance between observations at the 
same time instant, ignoring observation noise, 

 

 

 

  

 Using the previous identities to simply and rewrite: 
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Isometric Embedding 

• Use a technique called fast maximum variance unfolding* 

• Objective of embedding is to find a redescription that 
preserves a local distance of the form 

• By using the inner product,                      , this can be rewritten: 

 

• By softening constraints, this gives an optimization problem: 
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* K. Weinberger, F. Sha, Q. Zhu, and L. Saul, Graph Laplacian regularization for large-scale  
semidefinite programming, Neural Information Processing Systems 19, 2007. 



Understanding the Optimization Problem 

 

 

• Maximize the spread of the embedded points while 
minimizing violations of distance constraints 

• Of the other constraints, the first one centers data points 

 

• [Technical] Last constraint makes sure we have semidefinite or 
Gramian matrix – related to inner product properties 

• [Technical] There are a lot of constraints (as before) but one can 
simplify the problem using Laplacian eigenvector approximation of 
the sparse connectivity graph 
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SCD Embedding Algorithm in Action 
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Typical image: SCD Embedding  
reconstruction: 



Multiple Levels of Knowledge 
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Spatial Semantic Hierarchy 

• A model of knowledge of large scale space consisting of 
multiple interacting representations 
– Inspired by the human cognitive map, a model of the same 

– Method for robot exploration and map building 

• Separates and utilizes everything from control level to 
topology level 

• Key idea: 

 Quantitative knowledge at the control, causal and topological 
levels supports a “patchwork map” of local geometric frames 
of reference linked by causal and topological connections. 
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A Lattice for Spatial Knowledge 
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Control Level 

 Provides local hill-climbing and trajectory following: allowing a 
robot to get to and hold a distinctive state 
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Lifting to the Causal Level 
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Exploring and Representing an Office 

02/02/2012 43 



Topology Level – in terms of relations 
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Some Open Questions – Discuss! 

• The SCD distance idea shows that sensory features can be 
extended using state of the art machine learning algorithms – 
how does one extend control actions in a similar sense? 

 

• Space is a foundational part of our common sense and many 
aspects of the abstraction in SSH utilize the naturalness of it. 
What happens when we pass to more complex “spaces”? 

 

• To what extent can this kind of learning be achieved in a 
continually changing world? 
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