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What do you Need to Know about your Robot? 
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Recap: What Problem is the Robot Solving? 

Environment 

Perception 

Action 

Adversarial  
actions & other 
agents 

Adversarial  
actions & other 
agents 

High-level 
goals 

Problem: How to generate actions, to achieve high-level goals, using limited 

perception and incomplete knowledge of environment & adversarial actions? 
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What does Robot Need to Know? 

• Given access to raw data channels for various uninterpreted 
sensors and motors 

• Devise a procedure for learning that will tell you what you 
need for various tasks (as yet unspecified) 
– What types of models? 

– What types of learning methods? 

 

 

Discussion: How will you do this? 
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What are you Learning from? 
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Consider the Various Tasks 

What does the robot need to know? 
How to get it? 
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Some Requirements 

• Models of motion 
– Own dynamics 

– Object dynamics 

– Other agents 

• Models of environment 
– Space & how I move in space 

– Other navigation considerations 

• Models of self 
– What is the connection between my sensors and actuators? 

– What do the sensorimotor channels even mean? 

– How to ground all of the above at this low level? 
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Linear Time Invariant (LTI) Systems 

• Consider the simple spring-mass-damper system: 

• The force applied by the spring is  

• Correspondingly, for the damper: 

• The combined equation of motion of the mass becomes: 

 

• One could also express this in state space form: 

M 

Fs Fd 
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How to Get Models? 

• One may not always want to derive analytical models, one 
often obtains them from experiment 
– System Identification 

• By observing inputs and outputs of a system, one tries to fit a 
suitable model that captures the dynamics 

• The model may then be used as a basis for controller 
synthesis, planning, etc. 

• In robotics, you need to do this at many different levels 
– Low level control of sensors and actuators 

– “Maps” of the world and objects 

– Models of people and other agents 
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Low-level System Identification 

• In order to design a controller, you must have a model 
 
 
 
 
 
 
 
 

• Model - system that transforms an input signal into output signal. 
• Often, may be represented by differential or difference equations. 

 
• A model is used, either explicitly or implicitly, within control design  

 

Controller Plant 

Model 

u(t) 

y(t) 

y(t) ^ 

u(t) 

d(t) 

r(t) 
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Signals & Systems Definitions 

• Typically, a system receives an input signal, x(t) (generally a vector) and 
transforms it into the output signal, y(t).  In modelling and control, this is 
further broken down: 

• u(t) is an input signal that can be manipulated (control signal) 

• w(t) is an input signal that can be measured (measurable disturbance) 

• v(t) is an input signal that cannot be measured (unmeasurable 
disturbance) 

• y(t) is the output signal 

• Typically, the system may have hidden states x(t) 

u(t) 

w(t) 

v(t) 

y(t) 
x(t) 
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Example: Solar-Heated House (Ljung) 

• The sun heats the air in the solar panels 

• The air is pumped into a heat storage (box filled with pebbles) 

• The stored energy can be later transferred to the house 

• We’re interested in how solar radiation, w(t), and pump velocity, u(t), 
affect heat storage temperature, y(t). 
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Example: Military Aircraft (Ljung) 

• Aim is to construct a mathematical model of dynamic behaviour to 
develop simulators, synthesis of autopilots and analysis of its properties 

• Data below used to build a model of pitch channel, i.e. how pitch rate, 
y(t), is affected by three separate control signals: elevator (aileron 
combinations at the back of wings), canard (separate set of rudders at 
front of wings) and leading flap edge 
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Identifying a System 

 

• Models of car behaviour (acceleration/steering) are built from 
experience/observational data 
 

• Generally, there may exist some prior knowledge (often formed 
from earlier observational data) that can be used with the existing 
data to build a model.  This can be combined in several ways: 

• Use past experience to express the equations (ODEs/difference 
equations) of the system/sub-systems and use observed data to 
estimate the parameters 

• Use past experience to specify prior distributions over parameters 

• The term modelling generally refers to the case when substantial 
prior knowledge exists, the term system identification refers to 
the case when the process is largely based on observed input-
output data.  
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Auto-Regressive with eXogenous  
inputs Model 

• Consider this ARX model with no disturbances 

 

• This can be used for prediction using: 

 

• and introducing the vectors: 

 

 

 

• the model can be written as 

• Note, that the prediction is a function of the estimated 
parameters which is sometimes written as 
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Least Squares Estimation 

• By manipulating the control signal u(t) over a period of time 1  t  N, we can 
collect the data set:  

 

• Lets assume that the data is generated by: 

 

• Where  is the “true” parameter vector and (0, 2) generates zero mean, 
normally distributed measurement noise with standard deviation . 

• We want to find the estimated parameter vector,   , that “best fits” this data. 

 

• Note that because of the random noise, we can’t fit the data exactly, but we 
can minimise the prediction errors squared using 

 

 Here, X is the matrix formed from input vectors (one row per observation, 
one column per input/parameter) and y is the measured output vector (one 
row per observation 
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Example: First Order ARX model  

• Consider the simple, first order, linear difference equation, ARX 
model: 

  

 where 10 data points Z10 = {u(1),y(1), …,u(10),y(10)} are collected. 

• This produces the (9*2) input matrix and (9*1) output vector: 

 

 

 

 

 

• Therefore the parameters =[a b]T can be estimated from 

 

   

   In Matlab: thetaHat = inv(X’*X)*X’*y  
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Model Quality and Experimental Design 
 

• The variance/covariance matrix to be inverted 

 

 

 

 

• Strongly determines the quality of the parameter estimates.  This 
in turn is determined by the distribution of the measured input. 

• Control signal should be chosen to make the matrix as well-
conditioned as possible (similar eigenvalues) 

• Number of training data & sampling time both affect the accuracy 
and condition of the matrix 

• Experimental design: choose experiments to optimally estimate 
model parameters 
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System Identification Process 

• In building a model, the designer has 
control over three parts of the process 

1. Generating the data set ZN 

2. Selecting a (set of) model structure 
(ARX for instance) 

3. Selecting the criteria (least squares for 
instance), used to specify the optimal 
parameter estimates 

 

• A very popular approach involves 
(recursive) parameter estimation 

Validate 
Model 

Calculate Model 

Choose 
Criterion 
of Fit 

Choose 
Model Set 

Data 

Experiment 
Design 

Priors 
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Some Questions 

 Who makes all the decisions? How to deploy that aspect? 

 

• What variables should I be using for the model? 
– Egocentric/allocentric frames, transformations, etc. 

• Once we have such a model, we can define control tasks in 
terms of this – where do the specifications come from? 

 

• What happens at the higher levels (maps, objects) and how 
do we tie this to that? 
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A Bootstrap Learning Framework 

• Learn models of robot and 
environment with no initial 
knowledge of what sensors 
and actuators are doing 

• Many learning methods 
begin this way, e.g., RL, but 
the goal here is to construct 
a representation 
incrementally and 
continually as well 
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Simple Scenario 

• Robot critter has a set of 
distance sensors (range) – 
one of which is defective – 
but it doesn’t know that yet 

• Other sensors: battery 
power, digital compass 

• It has a track-style motor 
apparatus – turn by 
differentially actuating its 
wheels 
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What do you learn from? 

 Randomized actions (hold a randomly chosen action for 10 
time steps), repeatedly applied 
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How does environment appear in the data? 



A Simple but Complete Procedure 
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One Step: Go from Raw Channels to 
Structure of Sensor Array 

• Sensors may come in groupings: ring of distance sensors, array 
of photoreceptors, video camera, etc. 

• We first want to extract groupings based on two criteria: 
– Sensors that have similar values over time 

– Sensors that have a similar frequency domain behaviour 

• Two distance metrics: 
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Example Trace 
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Extending the Group Notion 

We can reason transitively about similarity: 

 

 

So, a wandering trace might yield something like this as groups: 
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After Transitive Closure 
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Getting at Structure of Array 

• Task is to find an assignment of positions (in space) to 
elements that captures the structure of the array as reflected 
in distance metric d1. 

• Distance between positions in image ≈ distance between 
elements according to d1. 

 

 

• This is a constraint satisfaction problem: n sensor elements 
yield n(n-1)/2 constraints. 

• Solve by metric scaling: 
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Structural Model of Distance Array 
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Roving Eye 
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If the array slowly roves over a much larger image, 
can you recover the structure of this array? 



Roving Eye Robot 
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d1 and d2 for Roving Eye (after 5 mins) 
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Metric Scaling Procedure 
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Where are we going with this? 
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