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What do you Need to Know about your Robot?
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Recap: What Problem is the Robot Solving?

Adversarial Perception
actions & other
agents

High-level

Adversarial
actions & other
agents

Problem: How to generate actions, to achieve high-level goals, using limited
perception and incomplete knowledge of environment & adversarial actions?
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What does Robot Need to Know?

* G@Given access to raw data channels for various uninterpreted
sensors and motors

* Devise a procedure for learning that will tell you what you
need for various tasks (as yet unspecified)
— What types of models?
— What types of learning methods?

Discussion: How will you do this?
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at are you Learning from?
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Consider the Various Tasks

What does the robot need to know?
How to get it?
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Some Requirements

* Models of motion
— Own dynamics
— Object dynamics
— Other agents
* Models of environment

— Space & how | move in space
— Other navigation considerations

e Models of self

— What is the connection between my sensors and actuators?
— What do the sensorimotor channels even mean?
— How to ground all of the above at this low level?
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Linear Time Invariant (LTI) Systems

* Consider the simple spring-mass-damper system:

 The force applied by the spring is Fs = —kz(t)

* Correspondingly, for the damper: Fa=7:(t)

* The combined equation of motion of the mass becomes:
23(t) = —v2(t) — k2(t)

* One could also express this in state space form:
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How to Get Models?

One may not always want to derive analytical models, one
often obtains them from experiment
— System ldentification

By observing inputs and outputs of a system, one tries to fit a
suitable model that captures the dynamics

The model may then be used as a basis for controller
synthesis, planning, etc.

In robotics, you need to do this at many different levels
— Low level control of sensors and actuators
— “Maps” of the world and objects
— Models of people and other agents



Low-level System Identification

* Inorder to design a controller, you must have a model

y(t)

u(t)

r(t)

d(t)

 Model - system that transforms an input signal into output signal.
e Often, may be represented by differential or difference equations.

A modelis used, either explicitly or implicitly, within control design

26/01/2012
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Signals & Systems Definitions

v(t)

X
=
S =
= =
vV
<
=
v

* Typically, a system receives an input signal, x(t) (generally a vector) and
transforms it into the output signal, y(t). In modelling and control, this is
further broken down:

e y(t)is an input signal that can be manipulated (control signal)
e w(t)is an input signal that can be measured (measurable disturbance)

e y(t)is an input signal that cannot be measured (unmeasurable
disturbance)

e y(t) is the output signal
* Typically, the system may have hidden states x(t)
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Example: Solar-Heated House (Ljung)

Storage Temperature (degrees C) Fan OFF and ON
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Figure 1.2 A solar-heated house.

e The sun heats the air in the solar panels
e The airis pumped into a heat storage (box filled with pebbles)
e The stored energy can be later transferred to the house

 We're interested in how solar radiation, w(t), and pump velocity, u(t),
affect heat storage temperature, y(t).
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Example: Military Aircraft (Ljung)

Aim is to construct a mathematical model of dynamic behaviour to

develop simulators, synthesis of autopilots and analysis of its properties

* Data below used to build a model of pitch channel, i.e. how pitch rate,
y(t), is affected by three separate control signals: elevator (aileron
combinations at the back of wings), canard (separate set of rudders at
front of wings) and leading flap edge

Figure 1.5 The Swedish fighter aircraft JAS-Gripen.

26/01/2012

Pitch rate . 0.02 . Leading Edge ll:lap . : ‘
0.06 ]
0.08

0.1

40 60 80 100 120 140 160 180

Elevator

0 20 40 60 80 100 120 140 160 180

0.02 Canard

0.06 W ]
0.08
oflaE o

0 20

40 60 80 100 120 140 160 180

0 20 40 60 80 100 120 140 160 180

Figure 1.6 Results from test flights of the Swedish aircraft JAS-Gri
-Gripen, developed b
SAAB AB, Sweden. The pitch rate and the elevatar laadine adea nqri A A-Mlz,z hé’um

13



ldentifying a System

Models of car behaviour (acceleration/steering) are built from
experience/observational data

Generally, there may exist some prior knowledge (often formed
from earlier observational data) that can be used with the existing
data to build a model. This can be combined in several ways:

Use past experience to express the equations (ODEs/difference
equations) of the system/sub-systems and use observed data to
estimate the parameters

Use past experience to specify prior distributions over parameters

The term modelling generally refers to the case when substantial
prior knowledge exists, the term system identification refers to
the case when the process is largely based on observed input-
output data.



Auto-Regressive with eXogenous
inputs Model
* Consider this ARX model with no disturbances
v+ yyt=)++ oyt = )=l — )+ 4 u(t— 1)
* This can be used for prediction using:

y()= - 1)/(2‘— )= — !ny(t_ )+ '1u(t_ )+t 'mu(t_ 1)
* and introducing the vectors:

o=k a4 b b7

X()= = (=) = == ) ut=) o out— )]

* the model can be written as y(t) = ()0

* Note, that the prediction is a function of the estimated
parameters which is sometimes written as

t[0)= ()0
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Least Squares Estimation

By manipulating the control signal u(t) over a period of time 1 <t <N, we can

collect the data set:
Z" = u(l), y(1),...,u(N), p(N)}

Lets assume that the data is generated by: y(£)=x (£)0+ ¢ ,0 )

Where 0 is the “true” parameter vector and X (0, 0?) generates zero mean,
normally distributed measurement noise with standard deviation o.

We want to find the estimated parameter vector, 6, that “best fits” this data.

Note that because of the random noise, we can’t fit the data exactly, but we
can minimise the prediction errors squared using 0 — X'X)" Xy

Here, X is the matrix formed from input vectors (one row per observation,
one column per input/parameter) and y is the measured output vector (one
row per observation



Example: First Order ARX model

Consider the simple, first order, linear difference equation, ARX

model: L) +ay(t— )=bu(t— )

where 10 data points 210 = {u(1),y(1), ...,u(10),y(10)} are collected.

This produces the (9*2) input matrix and (9*1) output vector:
|ry(l) u(lﬂl |Fy(2ﬂ|

@ w@ o)

= . . Y= .
SNBNIRAEN
L y(9) u(9)] | »(10) |

Therefore the parameters 6=[a b]” can be estimated from

0= XX) Xy

X

In Matlab: thetaHat = inv (X’ *X)*X’*y
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Model Quality and Experimental Design

 The variance/covariance matrix to be inverted

F Yo D xOx@) - Ztm(z)xn(rﬂ'
Z x2<r>xl<t> DM e D xn0x,0))
| : : |

) |
Lan@)xl(f) > 5 Oxn0 - Y %0

e Strongly determines the quality of the parameter estimates. This
in turn is determined by the distribution of the measured input.

e Control signal should be chosen to make the matrix as well-
conditioned as possible (similar eigenvalues)

e Number of training data & sampling time both affect the accuracy
and condition of the matrix

Experimental design: choose experiments to optimally estimate

model parameters
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System ldentification Process

In building a model, the designer has
control over three parts of the process

Generating the data set Z

Selecting a (set of) model structure
(ARX for instance)

Selecting the criteria (least squares for
instance), used to specify the optimal
parameter estimates

A very popular approach involves
(recursive) parameter estimation
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Some Questions

Who makes all the decisions? How to deploy that aspect?

 What variables should | be using for the model?

— Egocentric/allocentric frames, transformations, etc.

* Once we have such a model, we can define control tasks in
terms of this — where do the specifications come from?

 What happens at the higher levels (maps, objects) and how
do we tie this to that?



A Bootstrap Learning Framework

Learn models of robot and
environment with no initial
knowledge of what sensors ( w

and actuators are doing

Many learning methods . 31
begin this way, e.g., RL, but [nall .| -(£)-a0
the goal here is to construct Sensory input Control

a representation L J
incrementally and

. Robot & World
continually as well

D. Pierce, B.J. Kuipers, Map learning with un-interpreted sensors and effectors,
Artificial Intelligence 91:169-227, 1997.

26/01/2012
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Simple Scenario

* Robot critter has a set of
distance sensors (range) —
one of which is defective —

but it doesn’t know that yet

* Other sensors: battery
power, digital compass

* It has a track-style motor
apparatus — turn by

differentially actuating its
wheels

26/01/2012
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What do you learn from?

Randomized actions (hold a randomly chosen action for 10
time steps), repeatedly applied

How does environment appear in the data?

26/01/2012
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A Simple but Complete Procedure

Problem.

Given: A robot with an uninterpreted, almost-everywhere approximately linear sensori-
motor apparatus in a continuous, static environment.

Learn: Descriptions of the structure of the robot’s sensorimotor apparatus and environ-
ment and an abstract interface to the robot suitable for prediction and navigation.

Solution.

Representation: A hierarchical model. At the bottom of the hierarchy are egocentric
models of the robot’s sensorimotor apparatus. At the top of the hierarchy is a discrete
abstraction of the robot’s environment defined by a set of discrete views and actions.

Method: A scquence of statistical and generate-and-test methods for learning the objects
of the hierarchical model.

26/01/2012
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One Step: Go from Raw Channels to
Structure of Sensor Array

e Sensors may come in groupings: ring of distance sensors, array
of photoreceptors, video camera, etc.

* We first want to extract groupings based on two criteria:
— Sensors that have similar values over time
— Sensors that have a similar frequency domain behaviour

e Two distance metrics:

l I
dyi(t) = ——— E lxi(T) — x; (7).
r+1
=0

dyij = Z | (dist xi); — (dist x;)],
{ BRRETE

1
2
h distribution
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f"ﬂ":’;_rj

Example Trace

if dk‘fj < min{Ek‘j, Ek.j}-

Epi = 2 min{dk,fj}.
J
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Extending the Group Notion

We can reason transitively about similarity:
i~ iff i jVvIk (i~ k) Ak~ ).

So, a wandering trace might yield something like this as groups:

(0122223)(012323)(01234)(12345)(23456) (34567)
(4567)(56789) (78910) (7891011) (89101112) (91011 12 13)
(10 11 12 13 14) (11 12 13 14 15) (12 13 14 15 16) (13 14 15 16 17)
(14 15 16 17 18) (15 16 17 18 19) (16 17 18 19) (17 18 19 21) (20)
(19 21 22 23) (02122 23) (012122 23) (24) (25) (26) (27) (23).
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After Transitive Closure

(01234567891011121314151617 18 19 21 22 23)
(20) defective

(24) battery voltage
(25) east

(26) north

(27) west

(28) south

26/01/2012
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Getting at Structure of Array

Task is to find an assignment of positions (in space) to

elements that captures the structure of the array as reflected
in distance metric d,.

Distance between positions in image = distance between
elements according to d,.

| (pos yi) — (pos y;) || = di

* This is a constraint satisfaction problem: n sensor elements
vield n(n-1)/2 constraints.

* Solve by metric scaling: E= %Z(H(pas yi) — (posy;)|| —d;)*.
ij
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Structural Model of Distance Array

Metric scaling eigenvalues

3.5

; }(?3?554 1'“98?654
2.5} IIZ 3 15

2t 1 : 3
1.5 IF? ul l?lj 0
. r 7 7

1} 18,9 211223 18)9 2.2223
0.5¢F

ﬂ " J 4 i "

1 2 3 45 6 7 8 910
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Roving Eye

Picture

If the array slowly roves over a much larger image,
can you recover the structure of this array?
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Roving Eye Robot
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d, and d, for Roving Eye (after 5 mins)

33
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Metric Scaling Procedure

Metric scaling eigenvaluss
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Where are we going with this?

Metrical Level T35
7O
O
o0 15 C)/A5
Topological Level '
O™
@] @)
\_t(;j
Procedural Level T
3 - @ —= a2
Control Level L
—————— ——Eﬁ—
Sensorimotor Level ut

f
e e
LA

Local state variables primitive actions
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