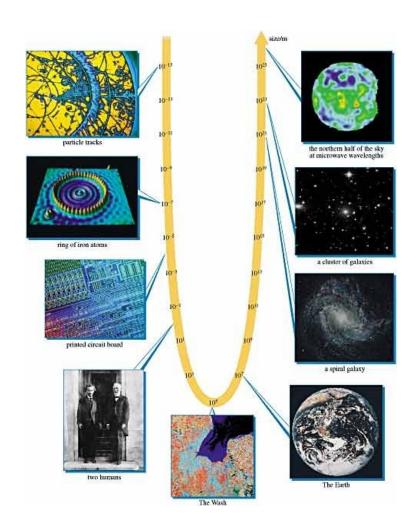
Structure and Synthesis of Robot Motion

Introduction

Subramanian Ramamoorthy
School of Informatics


16 January, 2012

What is a **Robot**?

What does the term "Robot Motion" mean?

Motion

- Fundamental concept (with space and time)
- One could say that much of modern science came out of the study of motion (bit more generally, dynamics)
- Only recently have people studied how information processing relates to motion...

Robot Motion: An Observation

- Most of us have some prior exposure to equations of motion,
 e.g., Newton's law F = m a
- Given a physical setup, and given all parameters, it is straight forward to compute what will happen to a robotic system
 (Note: I exaggerate, but most models of robot motion are relatively well understood from first principles no mystery)

The robot's real problem is this: Given (ill-posed) requirements, compute actions to achieve complex goals ... and "intelligence" requires clever strategies in the face of incomplete knowledge of an unknown future

Viewpoint

Programming Machines That Work

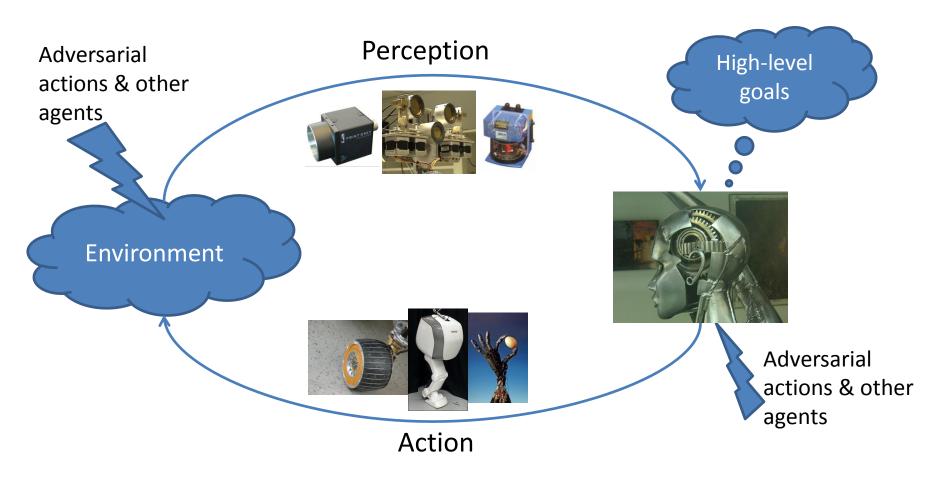
Daniel Koditschek University of Michigan

Abstract

Robotics is a fledgling discipline concerned with programming work: that is, specifying and controlling the exchange of energy between a machine and its environment. Because our understanding of how to do this is still quite rudimentary, the best progress in the field has come from a mix of inspired building and formal analysis. For more than a decade, my students and I have pursued such an agenda, building robots whose controllers drive the coupled robot-environment state toward a goal set and away from obstacles. The talk reviews our progress to date: what sort of "programs" do we know to build, with what theoretical guarantees, and with what empirical success?

- What do we want the program to do?
- What principles might guide the design of such programs?

What Are We **Really** After?



We are able to automate many behaviours...

but not something like this! WHY?

What are the **Components** of the Problem?

<u>Problem</u>: How to generate actions, to achieve high-level goals, using limited perception and incomplete knowledge of environment & adversarial actions?

Some Examples ...

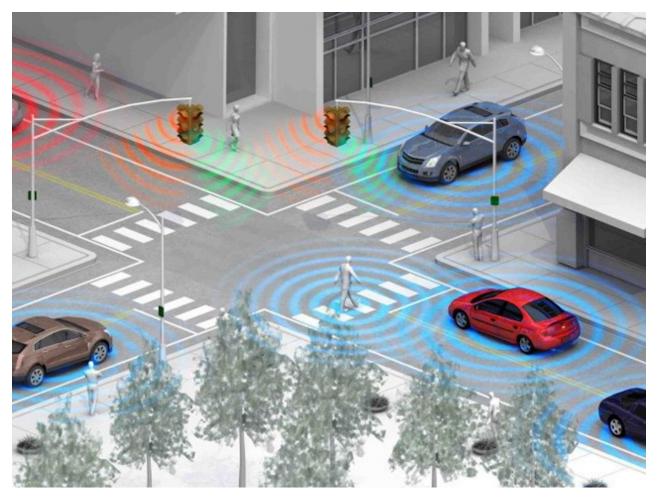
Robot Cars

http://www.youtube.com/watch?gl=GB&v=1W27Q6
 YvTXc

Rescue Robots

http://www.youtube.com/watch?v=F7lqriYKsX4

Robots at Home


http://www.youtube.com/watch?v=KKZ-yRg8Wvg

Components of the Problem

In each case,

- what are the components? how do you delineate?
- what do you (i.e., your robot) need to know?
- what does a motion strategy consist of?

What changes? Who else is around?

How does the car move?
- <u>Kinematics</u>, <u>Dynamics</u>

Where does the car move?
- World models

In this course...

We will focus on how to make decisions regarding robot motion, broadly defined, w.r.t. various kinds of **unknowns**:

- 1. Making sense of sensorimotor systems
- 2. Motion synthesis under uncertainty in state/actions
- 3. Motion synthesis with strategic considerations
- 4. Motion synthesis in groups and formations
- 5. Decentralized decision making and motion synthesis
- 6. Information incompleteness and asymmetry

Course Structure

- Schedule of lectures is available at the course web site
- Tutorials (conducted by Benjamin S. Rosman)
- Three homework assignments
 - Learning sensorimotor structure (10%)
 - Motion synthesis under uncertainty (10%)
 - Multi-robot coordinated decision making (20%)
- Final Exam (60% of final mark)
- Resources:
 - No prescribed textbook
 - Suggested readings (books) listed in course web site
 - Additional readings from research litt. will be suggested for each topic

Questions

Ask Questions!

- During the lecture
- After class, if your questions are brief
- After hours, by prior appointment only (send me email)
 - You may also contact your (unofficial) tutor, Benji
 - Be aware of Informatics Forum schedule for teaching activities (https://wiki.inf.ed.ac.uk/Vademecum/InformaticsForum)