

SPNLP: Ambiguity and Underspecification

Lascarides & Klein

Outline

Representing Ambiguity

Conclusion

Semantics and Pragmatics of NLP Ambiguity and Underspecification

Alex Lascarides & Ewan Klein

School of Informatics University of Edinburgh

31 January 2008

SPNLP: Ambiguity and Underspecification

Lascarides & Klein

Outline

Representing Ambiguity Conclusion

1 Representing Ambiguity

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Operator Ambiguity

SPNLP: Ambiguity and Underspecification

Lascarides & Klein

Outline

Representing Ambiguity

Conclusion

Don't choose the fish starter or order white wine.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

□ ¬(choose-fish ∨ order-white-wine)
 [¬choose-fish) ∨ order-white-wine

Operator Ambiguity

SPNLP: Ambiguity and Underspecification

Lascarides & Klein

Outline

Representing Ambiguity

Conclusion

Don't choose the fish starter or order white wine.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

1 \neg (choose-fish \lor order-white-wine)

2 (¬choose-fish) ∨ order-white-wine

Operator Ambiguity

SPNLP: Ambiguity and Underspecification

Lascarides & Klein

Outline

Representing Ambiguity

Conclusion

Don't choose the fish starter or order white wine.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

- 1 ¬(choose-fish ∨ order-white-wine)
- 2 $(\neg choose-fish) \lor order-white-wine$

SPNLP: Ambiguity and Underspecification

Lascarides 8 Klein

Outline

Representing Ambiguity

Conclusion

Every man loves a woman

1 $\forall x(\max(x) \rightarrow \exists y(\operatorname{woman}(y) \land \operatorname{love}(x, y)))$ 2 $\exists y(\operatorname{woman}(y) \land \forall x(\max(x) \rightarrow \operatorname{love}(x, y)))$

Semantic scope ambiguity, but:

Only one syntactic form in most current grammars

▲□▶▲□▶▲□▶▲□▶ □ のQで

- To advocate syntactic ambiguity is:
 - ad hoc
 - computationally problematic
 - inadequate with respect to pragmatics

SPNLP: Ambiguity and Underspecification

Lascarides 8 Klein

Outline

Representing Ambiguity

Conclusion

■ Every man loves a woman 1 $\forall x(man(x) \rightarrow \exists y(woman(y) \land love(x, y)))$ 2 $\exists y(woman(y) \land \forall x(man(x) \rightarrow love(x, y)))$

Semantic scope ambiguity, but:

Only one syntactic form in most current grammars

- To advocate syntactic ambiguity is:
 - ad hoc
 - computationally problematic
 - inadequate with respect to pragmatics

SPNLP: Ambiguity and Underspecification

Lascarides & Klein

Outline

Representing Ambiguity

Conclusion

Every man loves a woman
 1 ∀x(man(x) → ∃y(woman(y) ∧ love(x, y)))
 2 ∃y(woman(y) ∧ ∀x(man(x) → love(x, y)))

Semantic scope ambiguity, but:

Only one syntactic form in most current grammars

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○

To advocate syntactic ambiguity is:

- ad hoc
- computationally problematic
- inadequate with respect to pragmatics

SPNLP: Ambiguity and Underspecification

Lascarides 8 Klein

Outline

Representing Ambiguity

Conclusion

- Every man loves a woman
 - 1 $\forall x(man(x) \rightarrow \exists y(woman(y) \land love(x, y)))$
 - 2 $\exists y (\operatorname{woman}(y) \land \forall x (\operatorname{man}(x) \to \operatorname{love}(x, y)))$

Semantic scope ambiguity, but:

Only one syntactic form in most current grammars

- To advocate syntactic ambiguity is:
 - ad hoc
 - computationally problematic
 - inadequate with respect to pragmatics

Lascarides & Klein

Outline

Representing Ambiguity

Conclusion

Build a partial description of the LF in the grammar:

- This is called an underspecified semantic representation or USR.
- Write an algorithm for working out which FOL formulas a USR describes.
 - More than one FOL formula ≈ semantic ambiguity.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○

SPNLP: Ambiguity and Underspecification

Lascarides & Klein

Outline

Representing Ambiguity

Conclusion

Build a partial description of the LF in the grammar:

This is called an underspecified semantic representation or USR.

Write an algorithm for working out which FOL formulas a USR describes.

■ More than one FOL formula ~ semantic ambiguity.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○

SPNLP: Ambiguity and Underspecification

Lascarides & Klein

Outline

Representing Ambiguity

Conclusion

- Build a partial description of the LF in the grammar:
 - This is called an underspecified semantic representation or USR.

Write an algorithm for working out which FOL formulas a USR describes.

More than one FOL formula \approx semantic ambiguity.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

SPNLP: Ambiguity and Underspecification

Lascarides & Klein

Outline

Representing Ambiguity

Conclusion

- Build a partial description of the LF in the grammar:
 - This is called an underspecified semantic representation or USR.
- Write an algorithm for working out which FOL formulas a USR describes.
 - \blacksquare More than one FOL formula \approx semantic ambiguity.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

SPNLP: Ambiguity and Underspecification

Lascarides & Klein

Outline

Representing Ambiguity

Conclusion

- Build a partial description of the LF in the grammar:
 - This is called an underspecified semantic representation or USR.
- Write an algorithm for working out which FOL formulas a USR describes.
 - \blacksquare More than one FOL formula \approx semantic ambiguity.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○

SPNLP: Ambiguity and Underspecification

Lascarides 8 Klein

Outline

Representing Ambiguity

Conclusion

The two readings again:

1 $\neg (F \lor W)$ 2 $(\neg F) \lor W$

Use h_i as a variable over sub-formulas:

(日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)
 (日)

 (日)

 (日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)
 </p

*h*₁ ∨ *W* ¬*h*₂

SPNLP: Ambiguity and Underspecification

Lascarides & Klein

Outline

Representing Ambiguity

Conclusion

Use h_i as a variable over sub-formulas:

Think of h_i as a 'hole' in the formula. Possible solutions:

▲□▶▲□▶▲□▶▲□▶ □ のQ@

1
(i)
$$h_1 = F$$

(ii) $h_2 = (F \lor W)$
2
(i) $h_1 = (\neg F)$
(ii) $h_2 = F$

SPNLP: Ambiguity and Underspecification

Lascarides & Klein

Outline

Representing Ambiguity

Conclusion

Use h_i as a variable over sub-formulas:

$$h_1 \lor W$$

 $\neg h_2$

Think of h_i as a 'hole' in the formula. Possible solutions:

1
(i)
$$h_1 = F$$

(ii) $h_2 = (F \lor W)$
2
(i) $h_1 = (\neg F)$
(ii) $h_2 = F$

Use h_i as a variable over sub-formulas:

SPNLP: Ambiguity and Underspecification

Lascarides & Klein

Outline

Representing Ambiguity

Think of h_i as a 'hole' in the formula. Possible solutions:

(日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)
 (日)

 (日)

 (日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)
 </p

(i) $h_1 = F$ (ii) $h_2 = (F \lor W)$

2

1

*h*₁ ∨ *W* ¬*h*₂

(i)
$$h_1 = (\neg F)$$

(ii) $h_2 = F$

Labels and Holes

SPNLP: Ambiguity and Underspecification

Lascarides 8 Klein

Outline

Representing Ambiguity

Conclusion

Use l_i as a label over sub-formulas:

(日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)
 (日)

 (日)

 (日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)
 </p

*I*₁ : ¬*h*₂
 *I*₂ : *h*₁ ∨ W
 *I*₃ : *F*

Possible solutions:

2

1

(i)
$$h_1 = l_1$$

(ii) $h_2 = l_3$

(i) $h_1 = l_3$ (ii) $h_2 = l_2$

Graphical Representation of Solutions

・ロト・日本・日本・日本・日本・日本

NB h_0 represents 'widest scope'.

Formulas as Trees

Mother semantically has scope over daughters

■ Left to right order ≈ order of arguments to mother 'constructor'.

Formulas as Trees

Mother semantically has scope over daughters
 Left to right order ≈ order of arguments to mother 'constructor'.

The Strategy

SPNLP: Ambiguity and Underspecification

Lascarides & Klein

Outline

Representing Ambiguity

Conclusion

Design a language which can describe these FOL trees.

- Introduce labels to refer to nodes of the tree.
 - To simplify matters, only label nodes which are roots for FOL formulas, e.g.,

- the nodes that label \lor , \neg , etc.
- Can express information about:
 - what formula a node labels;
 - which node dominates which other nodes (information about relative semantic scope)

The Same Trees with the Labels

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Lascarides & Klein

Outline

Representing Ambiguity

Conclusion

Partial order \leq between holes and labels.

 $\blacksquare I_i \leq h_i: h_i \text{ has scope over } I_i.$

• Note that \leq is transitive.

If $I_3 \leq h_1$: choose fish (F) is in the scope of don't (\neg)

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○

■ $I_3 \le h_2$: *choose fish (F)* is in the scope of *or* (∨).

If $I_1 \leq h_0$: *don't* can take widest scope.

If $l_2 \leq h_0$: or can take widest scope.

SPNLP: Ambiguity and Underspecification

Lascarides & Klein

Outline

Representing Ambiguity

Conclusion

• Partial order \leq between holes and labels.

If $I_i \leq h_i$: h_i has scope over I_i .

• Note that \leq is transitive.

• $I_3 \leq h_1$: choose fish (F) is in the scope of don't (\neg)

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○

■ $I_3 \leq h_2$: *choose fish (F)* is in the scope of *or* (∨).

I₁ ≤ h₀: don't can take widest scope.

If $l_2 \leq h_0$: or can take widest scope.

SPNLP: Ambiguity and Underspecification

Lascarides & Klein

Outline

Representing Ambiguity

Conclusion

- Partial order \leq between holes and labels.
- Ij $l_i \leq h_i$: h_i has scope over l_i .
- Note that ≤ is transitive.
 - $l_3 \leq h_1$: *choose fish* (*F*) is in the scope of *don't* (¬).

- $l_3 \leq h_2$: *choose fish* (*F*) is in the scope of *or* (\lor).
- If $I_1 \leq h_0$: *don't* can take widest scope.
- If $I_2 \leq h_0$: or can take widest scope.

- SPNLP: Ambiguity and Underspecification
- Lascarides & Klein
- Outline
- Representing Ambiguity
- Conclusion

- Partial order \leq between holes and labels.
- Ij $l_i \leq h_i$: h_i has scope over l_i .
- Note that \leq is transitive.
 - $l_3 \leq h_1$: *choose fish* (*F*) is in the scope of *don't* (¬).

- $I_3 \leq h_2$: *choose fish* (*F*) is in the scope of *or* (\lor).
- If $I_1 \leq h_0$: *don't* can take widest scope.
- If $I_2 \leq h_0$: or can take widest scope.

- SPNLP: Ambiguity and Underspecification
- Lascarides & Klein
- Outline
- Representing Ambiguity
- Conclusion

- Partial order \leq between holes and labels.
- Ij $l_i \leq h_i$: h_i has scope over l_i .
- Note that \leq is transitive.
 - $l_3 \leq h_1$: *choose fish* (*F*) is in the scope of *don't* (¬).

- $I_3 \leq h_2$: choose fish (F) is in the scope of or (\lor).
- If $I_1 \leq h_0$: *don't* can take widest scope.
- I $l_2 \leq h_0$: or can take widest scope.

SPNLP: Ambiguity and Underspecification

Lascarides & Klein

Outline

Representing Ambiguity

Conclusion

- Partial order \leq between holes and labels.
- Ij $l_i \leq h_i$: h_i has scope over l_i .
- **•** Note that \leq is transitive.
 - $l_3 \leq h_1$: *choose fish* (*F*) is in the scope of *don't* (¬).

- $l_3 \leq h_2$: choose fish (F) is in the scope of or (\lor).
- If $I_1 \leq h_0$: *don't* can take widest scope.
- If $I_2 \leq h_0$: or can take widest scope.

SPNLP: Ambiguity and Underspecification

Lascarides & Klein

Outline

Representing Ambiguity

Conclusion

- Partial order \leq between holes and labels.
- Ij $l_i \leq h_i$: h_i has scope over l_i .
- **•** Note that \leq is transitive.
 - $l_3 \leq h_1$: choose fish (F) is in the scope of don't (¬).

- $I_3 \leq h_2$: choose fish (F) is in the scope of or (\lor).
- If $I_1 \leq h_0$: *don't* can take widest scope.
- If $l_2 \leq h_0$: or can take widest scope.

Solutions and Non-solutions

Lascarides & Klein

Outline

Representing Ambiguity

Conclusion

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

The USR Language: Predicate Logic Unplugged (PLU)

SPNLP: Ambiguity and Underspecification

Lascarides & Klein

Outline

Representing Ambiguity

Conclusion

Have internal holes $H = \{h_1, h_2, \ldots\}$ plus 'top hole' h_0

Terms are constants and variables

2 An atomic FOL formula is an atomic PLU formula

- 3 If h is an internal hole, then h is a PLU formula.
- 4 If ϕ and ψ are PLU formulas, then so are $\neg \phi, \phi \rightarrow \psi, \phi \lor \psi, \phi \land \psi$.
- 5 If x is a variable and ϕ is a PLU formula, then $\forall x \phi$ and $\exists x \phi$ are PLU formulas.

The USRs

SPNLP: Ambiguity and Underspecification

Lascarides & Klein

Outline

Representing Ambiguity

Conclusion

A USR is a triple:

- A set of labels and holes that are used in the USR
- 2 A set of labelled PLU formulas
- 3 A set of constraints $l \le h$ where l is a label and h is a hole (including h_0).

$$\left\langle \left\{ \begin{array}{c} l_1\\ l_2\\ l_3\\ h_0\\ h_1\\ h_2 \end{array} \right\}, \left\{ \begin{array}{c} l_1:\neg h_1\\ l_2:h_2 \lor \text{ order-white-wine }\\ l_3:\text{ choose-fish} \end{array} \right\}, \left\{ \begin{array}{c} l_1 \le h_0\\ l_2 \le h_0\\ l_3 \le h_1\\ l_3 \le h_2 \end{array} \right\} \right\rangle$$

SPNLP: Ambiguity and Underspecification

Lascarides & Klein

Outline

Representing Ambiguity

Conclusion

Read section 3.4 of Blackburn & Bos on Hole Semantics

 For a more constrained alternative, see Copestake et al (ACL 2001) — Minimal Recursion Semantics (MRS)

▲□▶▲□▶▲□▶▲□▶ □ のQ@

SPNLP: Ambiguity and Underspecification

Lascarides & Klein

Outline

Representing Ambiguity

Conclusion

- Read section 3.4 of Blackburn & Bos on Hole Semantics
- For a more constrained alternative, see Copestake et al (ACL 2001) — Minimal Recursion Semantics (MRS)

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Underspecification Recapitulated

- SPNLP: Ambiguity and Underspecification
- Lascarides & Klein
- Outline
- Representing Ambiguity
- Conclusion

- Don't build LFs in the grammar; build partial descriptions of LFs!
- Language for describing LFs
 - Labels: name formulas/nodes in structure Holes: name arguments with unknown values
- Accumulate constraints in the grammar; this is a USR.
- Scoping algorithm gives all possible readings from the USR, but not the preferred readings.

Architecture

SPNLP: Ambiguity and Underspecification

Lascarides 8 Klein

Outline

Representing Ambiguity

Conclusion

Grammar: supplies constraints on the form of the LF. Pragmatics: augments these constraints with more constraints.

Logic of USRs is different from the logic of LFs!

$\phi \models_{usr} \Phi$	$M' \models_{fol} \phi'$
FOL formula ϕ satisfies USR Φ	<i>M</i> ' satisfies the FOL formula ϕ'
ϕ is a finite model	M' can be infinite
\models_{usr} doesn't know about quanti-	\models_{fol} knows about quantifiers.
fiers.	

Calculating what is said is easier than checking whether it's true.