# 1 SPNLP 2008: Ambiguity and Underspecification

## Contents

| 1 | Outline                | 1 |
|---|------------------------|---|
| 2 | Representing Ambiguity | 1 |
| 3 | Conclusion             | 5 |

# 2 Representing Ambiguity

### **Operator Ambiguity**

Don't choose the fish starter or order white wine.

- 1.  $\neg$ (choose-fish  $\lor$  order-white-wine)
- 2.  $(\neg choose-fish) \lor order-white-wine$

### Quantifier Scope Ambiguity

- Every man loves a woman
  - 1.  $\forall x(\max(x) \rightarrow \exists y(\operatorname{woman}(y) \land \operatorname{love}(x, y)))$
  - 2.  $\exists y(\mathsf{woman}(y) \land \forall x(\mathsf{man}(x) \to \mathsf{love}(x, y)))$

Semantic scope ambiguity, but:

- Only one syntactic form in most current grammars
- To advocate syntactic ambiguity is:
  - ad hoc
  - computationally problematic
  - inadequate with respect to pragmatics

### Underspecification

- Build a *partial description* of the LF in the grammar:
  - This is called an *underspecified semantic representation* or USR.
- Write an algorithm for working out which FOL formulas a USR describes.
  - More than one FOL formula  $\approx$  semantic ambiguity.
- That is, any FOL formula which satisfies a USR is a possible LF.

#### Back to the fish and wine example, 1

The two readings again:

Use  $h_i$  as a variable over sub-formulas:

- $h_1 \vee W$
- $\neg h_2$

#### Back to the fish and wine example, 2

Use  $h_i$  as a variable over sub-formulas:

- $h_1 \vee W$
- $\neg h_2$

Think of  $h_i$  as a 'hole' in the formula. Possible solutions:

1. (i) 
$$h_1 = F$$
  
(ii)  $h_2 = (F \lor W)$ 

2. (i)  $h_1 = (\neg F)$ (ii)  $h_2 = F$ 

#### Labels and Holes

Use  $l_i$  as a *label* over sub-formulas:

- $l_1: \neg h_2$
- $l_2: h_1 \vee W$
- $l_3: F$

Possible solutions:

- 1. (i)  $h_1 = l_3$ (ii)  $h_2 = l_2$
- 2. (i)  $h_1 = l_1$ (ii)  $h_2 = l_3$

#### **Graphical Representation of Solutions**



NB  $h_0$  represents 'widest scope'.

#### Formulas as Trees



- Mother semantically has scope over daughters
- Left to right order  $\approx$  order of arguments to mother 'constructor'.

#### The Strategy

Design a language which can describe these FOL trees.

- Introduce labels to refer to nodes of the tree.
  - To simplify matters, only label nodes which are roots for FOL formulas, e.g.,
  - the nodes that label  $\lor$ ,  $\neg$ , etc.
- Can express information about:
  - what formula a node labels;
  - which node dominates which other nodes (information about relative semantic scope)

#### The Same Trees with the Labels



#### **Dominance Constraints**

- Partial order  $\leq$  between holes and labels.
- $l_i \leq h_j$ :  $h_j$  has scope over  $l_i$ .
- Note that  $\leq$  is transitive.
  - $l_3 \leq h_1$ : *choose fish* (*F*) is in the scope of *don't* (¬).
  - $l_3 \leq h_2$ : *choose fish* (*F*) is in the scope of *or* ( $\lor$ ).
  - $l_1 \leq h_0$ : *don't* can take widest scope.
  - $l_2 \leq h_0$ : *or* can take widest scope.

#### **Dominance Constraints**



Solutions and Non-solutions



#### The USR Language: Predicate Logic Unplugged (PLU)

Have internal holes  $H = \{h_1, h_2, \ldots\}$  plus 'top hole'  $h_0$ 

- 1. Terms are constants and variables
- 2. An atomic FOL formula is an atomic PLU formula
- 3. If h is an internal hole, then h is a PLU formula.
- 4. If  $\phi$  and  $\psi$  are PLU formulas, then so are  $\neg \phi, \phi \rightarrow \psi, \phi \lor \psi, \phi \land \psi$ .
- 5. If *x* is a variable and  $\phi$  is a PLU formula, then  $\forall x \phi$  and  $\exists x \phi$  are PLU formulas.

#### The USRs

A USR is a triple:

- 1. A set of labels and holes that are used in the USR
- 2. A set of labelled PLU formulas
- 3. A set of constraints  $l \leq h$  where l is a label and h is a hole (including  $h_0$ ).

$$\left\langle \left\{ \begin{array}{c} l_1 \\ l_2 \\ l_3 \\ h_0 \\ h_1 \\ h_2 \end{array} \right\}, \left\{ \begin{array}{c} l_1 : \neg h_1 \\ l_2 : h_2 \lor \text{ order-white-wine} \\ l_3 : \text{choose-fish} \end{array} \right\}, \left\{ \begin{array}{c} l_1 \le h_0 \\ l_2 \le h_0 \\ l_3 \le h_1 \\ l_3 \le h_2 \end{array} \right\} \right\rangle$$

### 3 Conclusion

#### Reading

• Read section 3.4 of Blackburn & Bos on Hole Semantics

• For a more constrained alternative, see Copestake et al (ACL 2001) — Minimal Recursion Semantics (MRS)

#### **Underspecification Recapitulated**

- Don't build LFs in the grammar; build partial descriptions of LFs!
- Language for describing LFs

**Labels:** name formulas/nodes in structure **Holes:** name arguments with unknown values

- Accumulate constraints in the grammar; this is a USR.
- Scoping algorithm gives all possible readings from the USR, but not the preferred readings.

#### Architecture

Grammar: supplies constraints on the form of the LF.

**Pragmatics:** augments these constraints with more constraints.

Logic of USRs is different from the logic of LFs!

| $\phi \models_{usr} \Phi$                  | $M' \models_{fol} \phi'$                 |
|--------------------------------------------|------------------------------------------|
| FOL formula $\phi$ satisfies USR $\Phi$    | $M'$ satisfies the FOL formula $\phi'$   |
| $\phi$ is a finite model                   | M' can be infinite                       |
| $\models_{usr}$ doesn't know about quanti- | $\models_{fol}$ knows about quantifiers. |
| fiers.                                     | -                                        |

Calculating what is said is easier than checking whether it's true.