
1 SPNLP 2008: Ambiguity and Underspecification

Contents

1 Outline 1

2 Representing Ambiguity 1

3 Conclusion 5

2 Representing Ambiguity

Operator Ambiguity

Don’t choose the fish starter or order white wine.

1. ¬(choose-fish ∨ order-white-wine)

2. (¬choose-fish) ∨ order-white-wine

Quantifier Scope Ambiguity

• Every man loves a woman

1. ∀x(man(x) → ∃y(woman(y) ∧ love(x, y)))

2. ∃y(woman(y) ∧ ∀x(man(x) → love(x, y)))

Semantic scope ambiguity, but:

• Only one syntactic form in most current grammars

• To advocate syntactic ambiguity is:

– ad hoc

– computationally problematic

– inadequate with respect to pragmatics

Underspecification

• Build a partial description of the LF in the grammar:

– This is called an underspecified semantic representation or USR.

• Write an algorithm for working out which FOL formulas a USR describes.

– More than one FOL formula ≈ semantic ambiguity.

• That is, any FOL formula which satisfies a USR is a possible LF.

Back to the fish and wine example, 1

The two readings again:

1. ¬(F ∨W)

2. (¬F) ∨W)

Use hi as a variable over sub-formulas:

• h1 ∨W

• ¬h2

Back to the fish and wine example, 2

Use hi as a variable over sub-formulas:

• h1 ∨W

• ¬h2

Think of hi as a ‘hole’ in the formula. Possible solutions:

1. (i) h1 = F

(ii) h2 = (F ∨W)

2. (i) h1 = (¬F)

(ii) h2 = F

Labels and Holes

Use li as a label over sub-formulas:

• l1 : ¬h2

• l2 : h1 ∨W

• l3 : F

Possible solutions:

1. (i) h1 = l3

(ii) h2 = l2

2. (i) h1 = l1

(ii) h2 = l3

2

Graphical Representation of Solutions

h0

l3: F

l1: ¬h1 l2: h2 v W

h0

l2: h2 v W l1: ¬h1

l3: F

NB h0 represents ‘widest scope’.

Formulas as Trees

F

 ¬

v

W F

¬

v

W

• Mother semantically has scope over daughters

• Left to right order ≈ order of arguments to mother ‘constructor’.

The Strategy

Design a language which can describe these FOL trees.

• Introduce labels to refer to nodes of the tree.

– To simplify matters, only label nodes which are roots for FOL formulas, e.g.,

– the nodes that label ∨, ¬, etc.

• Can express information about:

– what formula a node labels;

– which node dominates which other nodes (information about relative semantic scope)

3

The Same Trees with the Labels

l3: F

l1: ¬

l2: v

l4: W l3: F

l1: ¬

l2: v

l4: W

Dominance Constraints

• Partial order ≤ between holes and labels.

• li ≤ hj : hj has scope over li.

• Note that ≤ is transitive.

– l3 ≤ h1: choose fish (F) is in the scope of don’t (¬).

– l3 ≤ h2: choose fish (F) is in the scope of or (∨).

– l1 ≤ h0: don’t can take widest scope.

– l2 ≤ h0: or can take widest scope.

Dominance Constraints

h0

l3: F

l1: ¬h1 l2: h2 v W

Solutions and Non-solutions

4

h0

l3: F

l1: ¬h1 l2: h2 v W

h0

l2: h2 v W l1: ¬h1

l3: F

h0

l3: F

l1: ¬h1

h0

l1: ¬h1

l1: ¬h1

l3: F

The USR Language: Predicate Logic Unplugged (PLU)

Have internal holes H = {h1, h2, . . .} plus ‘top hole’ h0

1. Terms are constants and variables

2. An atomic FOL formula is an atomic PLU formula

3. If h is an internal hole, then h is a PLU formula.

4. If φ and ψ are PLU formulas, then so are ¬φ, φ→ ψ, φ ∨ ψ, φ ∧ ψ.

5. If x is a variable and φ is a PLU formula, then ∀xφ and ∃xφ are PLU formulas.

The USRs

A USR is a triple:

1. A set of labels and holes that are used in the USR

2. A set of labelled PLU formulas

3. A set of constraints l ≤ h where l is a label and h is a hole (including h0).

〈

l1
l2
l3
h0

h1

h2

,

 l1 : ¬h1

l2 : h2 ∨ order-white-wine
l3 : choose-fish

 ,

l1 ≤ h0

l2 ≤ h0

l3 ≤ h1

l3 ≤ h2

〉

3 Conclusion

Reading

• Read section 3.4 of Blackburn & Bos on Hole Semantics

5

• For a more constrained alternative, see Copestake et al (ACL 2001) — Minimal Recursion Seman-
tics (MRS)

Underspecification Recapitulated

• Don’t build LFs in the grammar; build partial descriptions of LFs!

• Language for describing LFs

Labels: name formulas/nodes in structure

Holes: name arguments with unknown values

• Accumulate constraints in the grammar; this is a USR.

• Scoping algorithm gives all possible readings from the USR, but not the preferred readings.

Architecture

Grammar: supplies constraints on the form of the LF.

Pragmatics: augments these constraints with more constraints.

Logic of USRs is different from the logic of LFs!

φ |=usr Φ M ′ |=fol φ′

FOL formula φ satisfies USR Φ M ′ satisfies the FOL formula φ′

φ is a finite model M ′ can be infinite
|=usr doesn’t know about quanti-
fiers.

|=fol knows about quantifiers.

Calculating what is said is easier than checking whether it’s true.

6

	Outline
	Representing Ambiguity
	Conclusion

