1 SPNLP 2008: Ambiguity and Underspecification

Contents

1 Outline 1
2 Representing Ambiguity 1
3 Conclusion 5

2 Representing Ambiguity

Operator Ambiguity

Don’t choose the fish starter or order white wine.

1. \(\neg(\text{choose-fish} \lor \text{order-white-wine}) \)
2. \((\neg \text{choose-fish}) \lor \text{order-white-wine} \)

Quantifier Scope Ambiguity

- Every man loves a woman

 1. \(\forall x(\text{man}(x) \rightarrow \exists y(\text{woman}(y) \land \text{love}(x, y))) \)

 2. \(\exists y(\text{woman}(y) \land \forall x(\text{man}(x) \rightarrow \text{love}(x, y))) \)

Semantic scope ambiguity, but:

- Only one syntactic form in most current grammars
- To advocate syntactic ambiguity is:
 - ad hoc
 - computationally problematic
 - inadequate with respect to pragmatics

Underspecification

- Build a partial description of the LF in the grammar:
 - This is called an underspecified semantic representation or USR.
- Write an algorithm for working out which FOL formulas a USR describes.
 - More than one FOL formula \(\approx \) semantic ambiguity.
- That is, any FOL formula which satisfies a USR is a possible LF.
Back to the fish and wine example, 1

The two readings again:

1. \(\neg (F \lor W) \)
2. \((\neg F) \lor W \)

Use \(h_i \) as a variable over sub-formulas:

- \(h_1 \lor W \)
- \(\neg h_2 \)

Back to the fish and wine example, 2

Use \(h_i \) as a variable over sub-formulas:

- \(h_1 \lor W \)
- \(\neg h_2 \)

Think of \(h_i \) as a ‘hole’ in the formula. Possible solutions:

1. (i) \(h_1 = F \)
 (ii) \(h_2 = (F \lor W) \)
2. (i) \(h_1 = (\neg F) \)
 (ii) \(h_2 = F \)

Labels and Holes

Use \(l_i \) as a label over sub-formulas:

- \(l_1 : \neg h_2 \)
- \(l_2 : h_1 \lor W \)
- \(l_3 : F \)

Possible solutions:

1. (i) \(h_1 = l_3 \)
 (ii) \(h_2 = l_2 \)
2. (i) \(h_1 = l_1 \)
 (ii) \(h_2 = l_3 \)
Graphical Representation of Solutions

NB h_0 represents ‘widest scope’.

Formulas as Trees

- Mother semantically has scope over daughters
- Left to right order \approx order of arguments to mother ‘constructor’.

The Strategy

Design a language which can describe these FOL trees.

- Introduce labels to refer to nodes of the tree.
 - To simplify matters, only label nodes which are roots for FOL formulas, e.g.,
 - the nodes that label \lor, \neg, etc.
- Can express information about:
 - what formula a node labels;
 - which node dominates which other nodes (information about relative semantic scope)
The Same Trees with the Labels

Dominance Constraints

- Partial order \leq between holes and labels.
- $l_i \leq h_j$: h_j has scope over l_i.
- Note that \leq is transitive.
 - $l_3 \leq h_1$: choose fish (F) is in the scope of don’t (¬).
 - $l_3 \leq h_2$: choose fish (F) is in the scope of or (\lor).
 - $l_1 \leq h_0$: don’t can take widest scope.
 - $l_2 \leq h_0$: or can take widest scope.

Solutions and Non-solutions
The USR Language: Predicate Logic Unplugged (PLU)

Have internal holes $H = \{h_1, h_2, \ldots\}$ plus 'top hole' h_0

1. Terms are constants and variables
2. An atomic FOL formula is an atomic PLU formula
3. If h is an internal hole, then h is a PLU formula.
4. If ϕ and ψ are PLU formulas, then so are $\neg \phi$, $\phi \rightarrow \psi$, $\phi \vee \psi$, $\phi \wedge \psi$.
5. If x is a variable and ϕ is a PLU formula, then $\forall x\phi$ and $\exists x\phi$ are PLU formulas.

The USRs

A USR is a triple:

1. A set of labels and holes that are used in the USR
2. A set of labelled PLU formulas
3. A set of constraints $l \leq h$ where l is a label and h is a hole (including h_0).

$$
\begin{align*}
&\left\{ \begin{array}{c}
l_1 \\
l_2 \\
l_3 \\
h_0 \\
h_1 \\
h_2 \\
\end{array} \right\}, \\
&\left\{ \begin{array}{c}
l_1 : \neg h_1 \\
l_2 : h_2 \vee \text{order-white-wine} \\
l_3 : \text{choose-fish} \\
\end{array} \right\}, \\
&\left\{ \begin{array}{c}
l_1 \leq h_0 \\
l_2 \leq h_0 \\
l_3 \leq h_1 \\
l_3 \leq h_2 \\
\end{array} \right\}
\end{align*}
$$

3 Conclusion

Reading

- Read section 3.4 of Blackburn & Bos on Hole Semantics
• For a more constrained alternative, see Copestake et al (ACL 2001) — Minimal Recursion Semantics (MRS)

Underspecification Recapitulated

• Don’t build LFs in the grammar; build partial descriptions of LFs!
• Language for describing LFs

 Labels: name formulas/nodes in structure

 Holes: name arguments with unknown values
• Accumulate constraints in the grammar; this is a USR.
• Scoping algorithm gives all possible readings from the USR, but not the preferred readings.

Architecture

Grammar: supplies constraints on the form of the LF.

Pragmatics: augments these constraints with more constraints.

Logic of USRs is different from the logic of LFs!

<table>
<thead>
<tr>
<th>(\phi \models_{\text{usr}} \Phi)</th>
<th>(M' \models_{\text{fol}} \phi')</th>
</tr>
</thead>
<tbody>
<tr>
<td>FOL formula (\phi) satisfies USR (\Phi)</td>
<td>(M') satisfies the FOL formula (\phi')</td>
</tr>
<tr>
<td>(\phi) is a finite model</td>
<td>(M') can be infinite</td>
</tr>
<tr>
<td>(\models_{\text{usr}}) doesn’t know about quantifiers.</td>
<td>(\models_{\text{fol}}) knows about quantifiers.</td>
</tr>
</tbody>
</table>

Calculating what is said is easier than checking whether it’s true.