1 SPNLP 2008: From Syntax to Model Checking

Contents

I_Outline]

[3 Computational Framework]

{4 Alternative Input Formats for Valuations|

[> Getting the Output|

2 Review
Logical Syntax and Semantics

e Alogical language based on:

1. function-argument structures: (M N)
2. lambda abstraction: A\z.(« z)

3. beta-reduction: (A\z.(M z) N) = (M N)
4. Boolean combinations: (¢ A v), ...

5. Quantified formulas: Vx.¢, 3x.¢

e Models for the language:
1. M =(D,V)

2. variable assignment g : Var — D

3. recursive definition of [a]*9 for expressions a.

4. M, g = ¢iff [p] M9 = 1.

Compositional Semantics
Compositionality The meaning of a complex expression is a function of the meaning of its parts.
How do we know what the parts are?

o Feature-based context-free grammar formalism.
e Every category has a sem feature whose value is the semantics of expressions of that category:

- lexical categories: fully-instantiated LF.

— phrasal categories: build an LF by function application over the LFs of the daughters.

Example PS Rule

Slsem = <app(?subj,?vp)>] —-> NP[sem=?subj] VP[sem=?vp]

3 Computational Framework
Computational Recap

e Logical expressions are parsed into subclasses of Expression by nltk.sem. logic.
e Expressions can be evaluated in a model by nltk.sem.evaluate.

e English sentences can be parsed into LFsbynltk.parse.featurechart (viathenltk.parse.load_earley |
function.)

Sample Interpretation

A dog barks —
Jz.((dog x) A (bark x)) —
[3x.((dog x) A (bark x)]M-9 = 1iff ...

Parsing

import nltk
tokens = "a dog barks’ .split ()
from nltk.parse import load_earley
cp = load_earley ('grammars/seml.fcfg’, trace=0)
trees = cp.nbest_parse (tokens)
for t in trees:
print t

Parsing Output

Parse for A dog barks

(S[sem=<some x. (and (dog x) (bark x))>]
(NP [sem=<\P.some x.(and (dog x) (P x))>]
(Det [sem=<\Q P.some x.(and (Q x) (P x))>] a)
(N[sem=<dog>] dog))
(VP [sem=<\x. (bark x)>]
(IV[sem=<\x. (bark x)>] barks)))

Declaring a Model

Model for A dog barks

from nltk.sem import =

val = Valuation ({

"fido’: 'f’,

"dog’: {"f’: True, '"d’": True},
"bark’: {’d’": True},

})

dom = val.domain

m = Model (dom, wval)

g = Assignment (dom)

Model Checking

Truth in model IN

>>> print m

Domain = set([’'d’, "f"]),
Valuation =

{"bark’: {’'d’: True},

"dog’: {’d": True, ’'f’: True},
"fido’: 'f’"}

>>> g

{}

>>> m.evaluate ('some x. ((dog x) and (bark x))’, 9)

True

Tracing

Truth in model M

>>> m.evaluate (' some x. ((dog x) and (bark x))’,g,trace=1)

Open formula is ' (and (dog x) (bark x))’ with assignment g
(trying assignment g[d/x])
value of ’ (and (dog x) (bark x))’ under g[d/x] is True
(trying assignment g[f/x])
value of '’ (and (dog x) (bark x))’ under g[f/x] is False
" (and (dog x) (bark x))’ evaluates to True under M, g
"some x. ((dog x) and (bark x))’ evaluates to True under M, g

4 Alternative Input Formats for Valuations

Inputting Valuations: Vanilla Method

from nltk.sem import =

val = Valuation({

7fido’: ’f7,

’kim’: "k’

’chase’: {’f’: {(’k’: True},
'k’ {7f’: True}}

})

dom = val.domain

m = Model (dom, val)

g = Assignment (dom)

Inputting Valuations: Read in tuples

from nltk.sem import =
val = Valuation/()
v = [(/fido’, ’"f’),
("kim”, ’"k”),
("chase’, set([(’'t", "k"), ('k’, "f7)]))
]
val.read(v)
dom = val.domain
m = Model (dom, val)
g = Assignment (dom)

Inputting Valuations: Read from string (or file)

from nltk.sem import =

mmn

v =
fido => £
kim => k
chase => {(f, k), (k, f)}
mmn
val = parse_valuation (v)
dom = val.domain
m = Model (dom, val)
g = Assignment (dom)

5 Getting the Output

Examining Valuations

Outputting tuples

>>> val

{Ifl: Ifl, ’klm’: Ik!,

"chase’: {'k’: {’'f’: True}, "f’': {'k’': True}}}
>>> relation = val[’chase’]

>>> relation

{"k": {"f’: True}, "f’: {"k’: True}}
>>> relation.tuples()

set ([("k", "£"), ("f", "k')1)

>>> val[’run’]

Traceback (most recent call last):

nltk.sem.evaluate.Undefined: Unknown expression: ’run’
>>> m.evaluate (" \\x. (chase x kim)’, g)

{"f’: True}

>>> m.evaluate (" \\x. some y. (chase x y)’, g).tuples()
set (["k’, "£'1)

Mapping from Syntax to Semantics, 1

Parse sentence & load valuation

from nltk.parse import FeatureEarleyChartParser
import nltk.data

grammar = nltk.data.load(’grammars/sem2.fcfg’)
val = nltk.data.load(’grammars/valuationl.val’)
dom = val.domain

m = Model (dom, val)

g = Assignment (dom)

sent = ’'some girl chases a dog’

result = nltk.sem.text_evaluate([sent], grammar, m, g)
for (syntree, semrep, value) in result[sent]:

[

print "’%s’ is %s in Model m\n" % (semrep.infixify (), value)

Mapping from Syntax to Semantics, 2

Result

"some x.((girl x) and
some z559. ((dog z559) and
(chase z559 x)))’
is True in Model m

6 Summary

Summary

e The NLTK implementation yields an end-to-end mapping:

— Compute all parses of a sentence S relative to a feature-based CFG;
— provide a logical form for each constituent of .S;
— parse the logical form LF for each reading of S;
— build a representation of a first order model M;

— recursively evaluate LF in M.

— If LF contains free variables, then value also depends on g.
e Major shortcoming so far: no treatment of semantic ambiguity, e.g., quantifier scope ambiguity.

e Two approachesin nltk.contrib: hole.py and gluesemantics package.

	Outline
	Review
	Computational Framework
	Alternative Input Formats for Valuations
	Getting the Output
	Summary

