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Transitive Verbs as Functions

We looked at replacing n-ary relations with functions. How
does this work with transitive verbs?

Version 1: chase of type <IND, IND >→ BOOL

Version 2: chase of type IND → (IND → BOOL)

Advantages of Version 2 (called a curryed function):

Makes the syntax more uniform.
Fits better with compositional semantics (discussed
later)
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Lambda

Lambdas talk about missing information, and where it is.

The λ binds a variable.
The positions of a λ-bound variable in the formula mark
where information is ‘missing’.
Replacing these variables with values fills in the
missing information.

Example:

λx .(man x) λ-abstract
(λx .(man x) john) application
(man john) β-reduction/function application.
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Types

IND and BOOL are basic types.
If σ, τ are types, then so is (σ → τ). Brackets are
omitted if no ambiguity.
For types τ , we have variables Var(τ ), constants
Con(τ ).
Since we are doing first order logic, we will later restrict
variables to Var(IND), but allow constants of any type.
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Terms in Typed Lambda Calculus

We define terms Term(τ ) of type τ :

Var(τ ) ⊆ Term(τ ).
Con(τ ) ⊆ Term(τ ).
If α ∈ Term(σ → τ) and β ∈ Term(σ) then
(αβ) ∈ Term(τ) (function application).
If x ∈ Var(σ) and α ∈ Term(ρ), then λx .α ∈ Term(τ),
where τ = (σ → ρ)



SPNLP:
Lambda
Terms,

Quantifiers,
Satisfaction

Lascarides &
Klein

Outline

Typed
Lambda
Calculus

First Order
Logic

Truth and
Satisfaction

Terms in Typed Lambda Calculus

We define terms Term(τ ) of type τ :

Var(τ ) ⊆ Term(τ ).
Con(τ ) ⊆ Term(τ ).
If α ∈ Term(σ → τ) and β ∈ Term(σ) then
(αβ) ∈ Term(τ) (function application).
If x ∈ Var(σ) and α ∈ Term(ρ), then λx .α ∈ Term(τ),
where τ = (σ → ρ)



SPNLP:
Lambda
Terms,

Quantifiers,
Satisfaction

Lascarides &
Klein

Outline

Typed
Lambda
Calculus

First Order
Logic

Truth and
Satisfaction

Terms in Typed Lambda Calculus

We define terms Term(τ ) of type τ :

Var(τ ) ⊆ Term(τ ).
Con(τ ) ⊆ Term(τ ).
If α ∈ Term(σ → τ) and β ∈ Term(σ) then
(αβ) ∈ Term(τ) (function application).
If x ∈ Var(σ) and α ∈ Term(ρ), then λx .α ∈ Term(τ),
where τ = (σ → ρ)



SPNLP:
Lambda
Terms,

Quantifiers,
Satisfaction

Lascarides &
Klein

Outline

Typed
Lambda
Calculus

First Order
Logic

Truth and
Satisfaction

Terms in Typed Lambda Calculus

We define terms Term(τ ) of type τ :

Var(τ ) ⊆ Term(τ ).
Con(τ ) ⊆ Term(τ ).
If α ∈ Term(σ → τ) and β ∈ Term(σ) then
(αβ) ∈ Term(τ) (function application).
If x ∈ Var(σ) and α ∈ Term(ρ), then λx .α ∈ Term(τ),
where τ = (σ → ρ)



SPNLP:
Lambda
Terms,

Quantifiers,
Satisfaction

Lascarides &
Klein

Outline

Typed
Lambda
Calculus

First Order
Logic

Truth and
Satisfaction

Extending to a First Order Language

1 Variables i.e., Var(IND): x , y , z, . . . , x0, x1, x2, . . .

2 Boolean connectives:
¬ BOOL → BOOL (negation)
∧ BOOL → (BOOL → BOOL) (and)
∨ BOOL → (BOOL → BOOL) (or)
→ BOOL → (BOOL → BOOL) (if. . . then)

3 Quantifiers: ∀ (all)
∃ (some)

4 Equality:
= τ → (τ → BOOL)

5 Punctuation: brackets and period
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Quantifier Syntax

If φ ∈ Term(BOOL), and x ∈ Var(IND), then ∀x .φ and
∃x .φ ∈ Term(BOOL).
x ∈ Var(IND) is called an individual variable.

Syntactic conventions:

Instead of writing ((= α)β), ((∧φ)ψ), etc., we write
(= α = β), (φ ∧ ψ), etc.
Instead of writing e.g., ((chase fido) john), we
sometimes write (chase fido john).
NB this is equivalent to chase(john, fido) on a relational
approach.
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Some Examples

1 ∃x .(love x kim)
Kim loves someone

2 (¬∃x .(love x kim))
Kim doesn’t love anyone

3 ∀x .((robber x) → ∃y .((customer y) ∧ (love y x)))
All robbers love a (perhaps different) customer

4 ∃y .((customer y) ∧ ∀x .((robber x) → (love y x)))
All robbers love the same customer
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Free and Bound Variables

((customer x) ∨ ∀x .((robber x) → ∃y .(person y)))

First occurrence of x is free;
Second occurrence of x is bound;
Occurrence of y is bound.
Free variable ≈ pronouns.

She loves Fido

Context needed to interpret she;
Something in addition to models so far needed to
interpret free variables.

A WFF (Term(BOOL)) with no free variables is a (closed)
sentence. FOL sentences ⊂ WFFs.
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Interpreting FOL Sentences

Task:

Compute whether a sentence is true or false with
respect to a model.

Is the sentence an accurate description of the situation?

Strategy: Compositionality!
Use recursion, but:

Subformula of ∀x .(robber x) is (robber x) and this is not
a sentence! So. . .
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Satisfaction: [[φ]]M,g = 1

Model M and variable assignment g satisfy the WFF φ.

g defined for all individual variables, i.e., x ∈ Var(IND);
g(x) ∈ D.
If α is an atomic term (∈ Con(τ ) ∪ Var(τ )), then

igV (α) =

{
g(α) if α is a variable
V (α) if α is a constant

[[∃x .φ]]M,g = 1 iff [[φ]]M,g[u/x ] = 1 for some u ∈ D
g[u/x ](x) = u
‘Try to find some value u for x that makes φ true’
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Value of a term in a model

Where M = 〈D,V 〉:

[[α]]M,g = igV (α) if α is atomic
[[(αβ)]]M,g = [[α]]M,g([[β]]M,g)
[[(λx .α)]]M,g = that function h such that for any u ∈

D,h(u) = [[α]]M,g[u/x ]

[[α1 = α2]]
M,g = 1 iff [[α1]]

M,g = [[α2]]
M,g

[[¬φ]]M,g = 1 iff [[φ]]M,g = 0
[[φ ∧ ψ]]M,g = 1 iff [[φ]]M,g = 1 and [[ψ]]M,g = 1
[[φ ∨ ψ]]M,g iff [[φ]]M,g = 1 or [[ψ]]M,g = 1
[[φ→ ψ]]M,g = 1 iff [[φ]]M,g = 0 or [[ψ]]M,g = 1
[[∃x .φ]]M,g = 1 iff [[φ]]M,g[u/x ] = 1 for some u ∈ D
[[∀x .φ]]M,g = 1 iff [[φ]]M,g[u/x ] = 1 for every u ∈ D.
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Truth (in terms of Satisfaction)

If φ ∈ Term(BOOL), we often write M,g |= φ instead of
[[φ]]M,g′

= 1.

It doesn’t matter which g you use for sentences, so:

Truth: A sentence φ is true in a model M (written
M |= φ) iff
for any g, M,g |= φ

Validity: A sentence φ is valid (written |= φ) iff
for any M, M |= φ

Entailment: φ1, . . . , φn |= ψ iff
if M,g |= φi for all i , 1 ≤ i ≤ n, then M,g |= ψ
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