

SPNLP: Lambda Terms, Quantifiers, Satisfaction

Lascarides 8 Klein

Outline

Typed Lambda Calculus

First Orde Logic

Truth and

Semantics and Pragmatics of NLP Lambda Terms, Quantifiers, Satisfaction

Alex Lascarides & Ewan Klein

School of Informatics University of Edinburgh

10 January 2008

SPNLP: Lambda Terms, Quantifiers, Satisfaction

Lascarides & Klein

Outline

Typed Lambda Calculus

First Orde ₋ogic

ruth and Satisfaction 1 Typed Lambda Calculus

2 First Order Logic

3 Truth and Satisfaction

SPNLP: Lambda Terms, Quantifiers, Satisfaction

Lascarides Klein

Outlin

Typed Lambda Calculus

First Orde Logic

Truth and Satisfactior We looked at replacing *n*-ary relations with functions. How does this work with transitive verbs?

- Version 1: chase of type <IND, IND >→ BOOL
- Version 2: chase of type IND \rightarrow (IND \rightarrow BOOL)

- Makes the syntax more uniform
- Fits better with compositional semantics (discussed later)

SPNLP: Lambda Terms, Quantifiers, Satisfaction

Lascarides & Klein

Outlin

Typed Lambda Calculus

First Orde Logic

Truth and Satisfactior We looked at replacing *n*-ary relations with functions. How does this work with transitive verbs?

- Version 1: chase of type <IND, IND >→ BOOL
- Version 2: chase of type IND \rightarrow (IND \rightarrow BOOL)

- Makes the syntax more uniform
- Fits better with compositional semantics (discussed later)

SPNLP: Lambda Terms, Quantifiers, Satisfaction

Lascarides & Klein

Outlin

Typed Lambda Calculus

First Orde Logic

Truth and Satisfactior We looked at replacing *n*-ary relations with functions. How does this work with transitive verbs?

- Version 1: chase of type <IND, IND >→ BOOL
- Version 2: chase of type IND \rightarrow (IND \rightarrow BOOL)

- Makes the syntax more uniform
- Fits better with compositional semantics (discussed later)

SPNLP: Lambda Terms, Quantifiers, Satisfaction

Lascarides Klein

Outlin

Typed Lambda Calculus

First Orde Logic

Truth and Satisfactio We looked at replacing *n*-ary relations with functions. How does this work with transitive verbs?

- Version 1: chase of type <IND, IND >→ BOOL
- Version 2: chase of type IND \rightarrow (IND \rightarrow BOOL)

- Makes the syntax more uniform.
- Fits better with compositional semantics (discussed later)

SPNLP: Lambda Terms, Quantifiers, Satisfaction

Lascarides Klein

Outlin

Typed Lambda Calculus

First Ordei Logic

Truth and Satisfactio We looked at replacing *n*-ary relations with functions. How does this work with transitive verbs?

- Version 1: chase of type <IND, IND >→ BOOL
- Version 2: chase of type IND \rightarrow (IND \rightarrow BOOL)

- Makes the syntax more uniform.
- Fits better with compositional semantics (discussed later)

Lambda

SPNLP: Lambda Terms, Quantifiers, Satisfaction

Lascarides Klein

Outlir

Typed Lambda Calculus

First Orde Logic

Truth and Satisfaction Lambdas talk about missing information, and where it is.

- The λ binds a variable.
- The positions of a λ -bound variable in the formula mark where information is 'missing'.
- Replacing these variables with values fills in the missing information.

Example:

 $\lambda x.(\max x)$

 λ -abstract

 \blacksquare (λx .(man x) john)

application

(man john)

 β -reduction/function application.

SPNLP: Lambda Terms, Quantifiers, Satisfaction

Lascarides Klein

Outlin

Typed Lambda Calculus

First Orde Logic

Truth and

■ IND and BOOL are basic types.

- If σ, τ are types, then so is $(\sigma \to \tau)$. Brackets are omitted if no ambiguity.
- For types τ , we have variables $Var(\tau)$, constants $Con(\tau)$.
- Since we are doing first order logic, we will later restrict variables to **Var**(IND), but allow constants of any type.

SPNLP: Lambda Terms, Quantifiers, Satisfaction

Lascarides Klein

Outiir

Typed Lambda Calculus

First Orde Logic

Truth and Satisfactior

- IND and BOOL are basic types.
- If σ, τ are types, then so is $(\sigma \to \tau)$. Brackets are omitted if no ambiguity.
- For types τ , we have variables $Var(\tau)$, constants $Con(\tau)$.
- Since we are doing first order logic, we will later restrict variables to **Var**(IND), but allow constants of any type.

SPNLP: Lambda Terms, Quantifiers, Satisfaction

Lascarides Klein

Outlin

Typed Lambda Calculus

First Orde Logic

Truth and Satisfactior

- IND and BOOL are basic types.
- If σ, τ are types, then so is $(\sigma \to \tau)$. Brackets are omitted if no ambiguity.
- For types τ , we have variables $Var(\tau)$, constants $Con(\tau)$.
- Since we are doing first order logic, we will later restrict variables to **Var**(IND), but allow constants of any type.

SPNLP: Lambda Terms, Quantifiers, Satisfaction

Lascarides Klein

Outlir

Typed Lambda Calculus

> First Orde ∟ogic

Truth and Satisfaction

- IND and BOOL are basic types.
- If σ, τ are types, then so is $(\sigma \to \tau)$. Brackets are omitted if no ambiguity.
- For types τ , we have variables $Var(\tau)$, constants $Con(\tau)$.
- Since we are doing first order logic, we will later restrict variables to Var(IND), but allow constants of any type.

SPNLP: Lambda Terms, Quantifiers, Satisfaction

Lascarides Klein

Outlin

Typed Lambda Calculus

First Orde Logic

Truth and Satisfaction

- $Var(\tau) \subseteq Term(\tau)$.
- lacksquare Con(au) \subseteq Term(au).
- If $\alpha \in \mathbf{Term}(\sigma \to \tau)$ and $\beta \in \mathbf{Term}(\sigma)$ then $(\alpha \beta) \in \mathbf{Term}(\tau)$ (function application).
- If $x \in \text{Var}(\sigma)$ and $\alpha \in \text{Term}(\rho)$, then $\lambda x.\alpha \in \text{Term}(\tau)$, where $\tau = (\sigma \to \rho)$

SPNLP: Lambda Terms, Quantifiers, Satisfaction

Lascarides Klein

Outlin

Typed Lambda Calculus

First Orde Logic

Truth and Satisfaction

- $Var(\tau) \subseteq Term(\tau)$.
- $Con(\tau) \subseteq Term(\tau)$.
- If $\alpha \in \text{Term}(\sigma \to \tau)$ and $\beta \in \text{Term}(\sigma)$ then $(\alpha \beta) \in \text{Term}(\tau)$ (function application).
- If $x \in \text{Var}(\sigma)$ and $\alpha \in \text{Term}(\rho)$, then $\lambda x.\alpha \in \text{Term}(\tau)$, where $\tau = (\sigma \to \rho)$

SPNLP: Lambda Terms, Quantifiers, Satisfaction

Lascarides Klein

Outlin

Typed Lambda Calculus

First Orde Logic

Truth and Satisfaction

- $Var(\tau) \subseteq Term(\tau)$.
- $Con(\tau) \subseteq Term(\tau)$.
- If $\alpha \in \text{Term}(\sigma \to \tau)$ and $\beta \in \text{Term}(\sigma)$ then $(\alpha \, \beta) \in \text{Term}(\tau)$ (function application).
- If $x \in \text{Var}(\sigma)$ and $\alpha \in \text{Term}(\rho)$, then $\lambda x.\alpha \in \text{Term}(\tau)$, where $\tau = (\sigma \to \rho)$

SPNLP: Lambda Terms, Quantifiers, Satisfaction

Lascarides Klein

Outlin

Typed Lambda Calculus

First Orde Logic

Truth and Satisfactior

- $Var(\tau) \subseteq Term(\tau)$.
- $Con(\tau) \subseteq Term(\tau)$.
- If $\alpha \in \text{Term}(\sigma \to \tau)$ and $\beta \in \text{Term}(\sigma)$ then $(\alpha \, \beta) \in \text{Term}(\tau)$ (function application).
- If $x \in \text{Var}(\sigma)$ and $\alpha \in \text{Term}(\rho)$, then $\lambda x \cdot \alpha \in \text{Term}(\tau)$, where $\tau = (\sigma \to \rho)$

Extending to a First Order Language

SPNLP: Lambda Terms, Quantifiers, Satisfaction

Lascarides Klein

Outlin

Typed Lambda Calculus

First Order Logic

Truth and Satisfactior 1 Variables i.e., **Var**(IND): $x, y, z, \dots, x_0, x_1, x_2, \dots$

2 Boolean connectives:

 \neg BOOL \rightarrow BOOL (negation)

 $\land \quad \mathsf{BOOL} \to (\mathsf{BOOL} \to \mathsf{BOOL}) \quad \text{(and)}$

 \lor BOOL \rightarrow (BOOL \rightarrow BOOL) (or)

ightarrow BOOL ightarrow (BOOL ightarrow BOOL) (if...then)

3 Quantifiers: ∀ (all) ∃ (some)

4 Equality:

$$=$$
 $\tau \rightarrow (\tau \rightarrow BOOL)$

5 Punctuation: brackets and period

SPNLP: Lambda Terms, Quantifiers, Satisfaction

Lascarides Klein

Outlin

Typed Lambda Calculus

First Order Logic

Truth and Satisfaction

- If $\phi \in \text{Term}(BOOL)$, and $x \in \text{Var}(IND)$, then $\forall x. \phi$ and $\exists x. \phi \in \text{Term}(BOOL)$.
- $x \in Var(IND)$ is called an individual variable.

- Instead of writing $((=\alpha)\beta)$, $((\land \phi)\psi)$, etc., we write $(=\alpha=\beta)$, $(\phi \land \psi)$, etc.
- Instead of writing e.g., ((chase fido) john), we sometimes write (chase fido john).
- NB this is equivalent to chase(john, fido) on a relational approach.

SPNLP: Lambda Terms, Quantifiers, Satisfaction

Lascarides Klein

Outlin

Typed Lambda Calculus

First Order Logic

Truth and Satisfaction

- If $\phi \in \text{Term}(BOOL)$, and $x \in \text{Var}(IND)$, then $\forall x.\phi$ and $\exists x.\phi \in \text{Term}(BOOL)$.
- $x \in Var(IND)$ is called an individual variable.

- Instead of writing $((=\alpha)\beta)$, $((\land \phi)\psi)$, etc., we write $(=\alpha=\beta)$, $(\phi \land \psi)$, etc.
- Instead of writing e.g., ((chase fido) john), we sometimes write (chase fido john).
- **NB** this is equivalent to chase(john, fido) on a relational approach.

SPNLP: Lambda Terms, Quantifiers, Satisfaction

Lascarides Klein

Outiin

Typed Lambda Calculus

First Order Logic

Truth and Satisfaction

- If $\phi \in \mathbf{Term}(\mathsf{BOOL})$, and $x \in \mathbf{Var}(\mathsf{IND})$, then $\forall x.\phi$ and $\exists x.\phi \in \mathbf{Term}(\mathsf{BOOL})$.
- $x \in Var(IND)$ is called an individual variable.

- Instead of writing $((=\alpha)\beta)$, $((\land \phi)\psi)$, etc., we write $(=\alpha=\beta)$, $(\phi \land \psi)$, etc.
- Instead of writing e.g., ((chase fido) john), we sometimes write (chase fido john).
- **NB** this is equivalent to chase(john, fido) on a relational approach.

SPNLP: Lambda Terms, Quantifiers, Satisfaction

Lascarides Klein

Outlin

Typed Lambda Calculus

First Order Logic

Truth and Satisfactior

- If $\phi \in \mathbf{Term}(\mathsf{BOOL})$, and $x \in \mathbf{Var}(\mathsf{IND})$, then $\forall x.\phi$ and $\exists x.\phi \in \mathbf{Term}(\mathsf{BOOL})$.
- $x \in Var(IND)$ is called an individual variable.

- Instead of writing $((=\alpha)\beta)$, $((\land \phi)\psi)$, etc., we write $(=\alpha=\beta)$, $(\phi \land \psi)$, etc.
- Instead of writing e.g., ((chase fido) john), we sometimes write (chase fido john).
- **NB** this is equivalent to chase(john, fido) on a relational approach.

SPNLP: Lambda Terms, Quantifiers, Satisfaction

Lascarides Klein

Outlin

Typed Lambda Calculus

First Order Logic

Truth and Satisfactio 1 $\exists x. (love x kim)$ *Kim loves someone*

- $(\neg \exists x. (love x kim))$ Kim doesn't love anyone
- $\exists \forall x.((\mathsf{robber}\,x) \to \exists y.((\mathsf{customer}\,y) \land (\mathsf{love}\,y\,x)))$ All robbers love a (perhaps different) customer
- 4 $\exists y.((\text{customer }y) \land \forall x.((\text{robber }x) \rightarrow (\text{love }y\ x)))$ All robbers love the same customer

SPNLP: Lambda Terms, Quantifiers, Satisfaction

Lascarides Klein

Outlin

Typed Lambda Calculus

First Order Logic

Truth and Satisfactior $\exists x. (\text{love } x \text{ kim})$ *Kim loves someone*

 $(\neg \exists x. (\text{love } x \text{ kim}))$ Kim doesn't love anyone

- $\exists \forall x.((\mathsf{robber}\,x) \to \exists y.((\mathsf{customer}\,y) \land (\mathsf{love}\,y\,x)))$ All robbers love a (perhaps different) customer
- 4 $\exists y.((\text{customer }y) \land \forall x.((\text{robber }x) \rightarrow (\text{love }y\ x)))$ All robbers love the same customer

SPNLP: Lambda Terms, Quantifiers, Satisfaction

Lascarides Klein

Outlin

Typed Lambda Calculus

First Order Logic

Truth and Satisfactior $\exists x. (\text{love } x \text{ kim})$ *Kim loves someone*

 $(\neg \exists x. (\text{love } x \text{ kim}))$ Kim doesn't love anyone

- $\exists \forall x.((\text{robber } x) \rightarrow \exists y.((\text{customer } y) \land (\text{love } y.x)))$ All robbers love a (perhaps different) customer
- 4 $\exists y.((\text{customer }y) \land \forall x.((\text{robber }x) \rightarrow (\text{love }y\ x)))$ All robbers love the same customer

SPNLP: Lambda Terms, Quantifiers, Satisfaction

Lascarides Klein

Outlin

Typed Lambda Calculus

First Order Logic

Truth and Satisfactior

- $\exists x. (\text{love } x \text{ kim})$ *Kim loves someone*
- 2 $(\neg \exists x. (love x kim))$ Kim doesn't love anyone
- $\exists \forall x. ((\text{robber } x) \rightarrow \exists y. ((\text{customer } y) \land (\text{love } y. x)))$ All robbers love a (perhaps different) customer
- 4 $\exists y.((\text{customer }y) \land \forall x.((\text{robber }x) \rightarrow (\text{love }y\ x)))$ All robbers love the same customer

SPNLP: Lambda Terms, Quantifiers, Satisfaction

Lascarides Klein

Outlin

Typed Lambda Calculus

First Order Logic

Truth and Satisfaction $((\mathsf{customer}\, x) \vee \forall x. ((\mathsf{robber}\, x) \to \exists y. (\mathsf{person}\, y)))$

- First occurrence of x is free;
- Second occurrence of x is bound; Occurrence of y is bound.
- Free variable \approx pronouns.
 - She loves Fido
- Context needed to interpret she; Something in addition to models so far needed to interpret free variables.

SPNLP: Lambda Terms, Quantifiers, Satisfaction

Lascarides a Klein

Outlin

Typed Lambda Calculus

First Order Logic

Fruth and Satisfaction $((\mathsf{customer}\, x) \lor \forall x. ((\mathsf{robber}\, x) \to \exists y. (\mathsf{person}\, y)))$

- First occurrence of x is free;
- Second occurrence of x is bound; Occurrence of y is bound.
- Free variable ≈ pronouns.
- Context needed to interpret she; Something in addition to models so far needed to interpret free variables.

SPNLP: Lambda Terms, Quantifiers, Satisfaction

Lascarides & Klein

Outlin

Typed Lambda Calculus

First Order Logic

Truth and Satisfactior $((\mathsf{customer}\, x) \vee \forall x. ((\mathsf{robber}\, x) \to \exists y. (\mathsf{person}\, y)))$

- First occurrence of x is free;
- Second occurrence of x is bound; Occurrence of y is bound.
- Free variable \approx pronouns.
 - She loves Fido
- Context needed to interpret she; Something in addition to models so far needed to interpret free variables.

SPNLP: Lambda Terms, Quantifiers, Satisfaction

Lascarides a Klein

Outlin

Typed Lambda Calculus

First Order Logic

Truth and Satisfaction $((\mathsf{customer}\, x) \vee \forall x. ((\mathsf{robber}\, x) \to \exists y. (\mathsf{person}\, y)))$

- First occurrence of x is free;
- Second occurrence of x is bound; Occurrence of y is bound.
- Free variable \approx pronouns.
 - She loves Fido
- Context needed to interpret she; Something in addition to models so far needed to interpret free variables.

SPNLP: Lambda Terms, Quantifiers, Satisfaction

Lascarides Klein

Outlin

Typed Lambda Calculus

First Order Logic

Truth and Satisfaction $((\mathsf{customer}\, x) \vee \forall x. ((\mathsf{robber}\, x) \to \exists y. (\mathsf{person}\, y)))$

- First occurrence of x is free;
- Second occurrence of x is bound; Occurrence of y is bound.
- Free variable \approx pronouns.
 - She loves Fido
- Context needed to interpret she; Something in addition to models so far needed to interpret free variables.

SPNLP: Lambda Terms, Quantifiers, Satisfaction

Lascarides Klein

Outlin

Typed Lambda Calculus

First Order Logic

Truth and Satisfaction $((\mathsf{customer}\, x) \vee \forall x. ((\mathsf{robber}\, x) \to \exists y. (\mathsf{person}\, y)))$

- First occurrence of x is free;
- Second occurrence of x is bound; Occurrence of y is bound.
- Free variable \approx pronouns.
 - She loves Fido
- Context needed to interpret she; Something in addition to models so far needed to interpret free variables.

SPNLP: Lambda Terms, Quantifiers, Satisfaction

Lascarides Klein

Outlin

Typed Lambda Calculus

First Order Logic

Truth and Satisfaction

```
((\mathsf{customer}\, x) \vee \forall x. ((\mathsf{robber}\, x) \to \exists y. (\mathsf{person}\, y)))
```

- First occurrence of x is free;
- Second occurrence of x is bound; Occurrence of y is bound.
- Free variable \approx pronouns.
 - She loves Fido
- Context needed to interpret she; Something in addition to models so far needed to interpret free variables.

Interpreting FOL Sentences

SPNLP: Lambda Terms, Quantifiers, Satisfaction

Lascarides Klein

Outlir

Typed Lambda Calculus

First Ordei Logic

Truth and Satisfaction

Task:

- Compute whether a sentence is true or false with respect to a model.
 - Is the sentence an accurate description of the situation?

Strategy: Compositionality!

Use recursion, but:

■ Subformula of $\forall x. (robber x)$ is (robber x) and this is not a sentence! So...

Satisfaction: $\llbracket \phi \rrbracket^{M,g} = 1$

SPNLP: Lambda Terms, Quantifiers, Satisfaction

Lascarides Klein

Outlin

Typed Lambda Calculus

First Orde Logic

Truth and Satisfaction

Model M and variable assignment g satisfy the WFF ϕ .

- g defined for all individual variables, i.e., $x \in Var(IND)$;
- $g(x) \in D$.
- If α is an atomic term (\in **Con**(τ) \cup **Var**(τ)), then

$$i_V^g(\alpha) = \left\{ egin{array}{ll} g(lpha) & \mbox{if } lpha \mbox{ is a variable} \\ V(lpha) & \mbox{if } lpha \mbox{ is a constant} \end{array}
ight.$$

- \blacksquare $\llbracket\exists x.\phi\rrbracket^{M,g}=1$ iff $\llbracket\phi\rrbracket^{M,g[u/x]}=1$ for some $u\in D$
- g[u/x](x) = u
- 'Try to find some value u for x that makes ϕ true'

Value of a term in a model

SPNLP: Lambda Terms, Quantifiers, Satisfaction

Lascarides Klein

Outlir

Typed Lambda Calculus

First Orde Logic

Truth and Satisfaction

Where $M = \langle D, V \rangle$:

```
\llbracket \alpha \rrbracket^{M,g} = i_{V}^{g}(\alpha)
                                                  if \alpha is atomic
[(\alpha \beta)]^{M,g}
                                                  = \llbracket \alpha \rrbracket^{M,g} (\llbracket \beta \rrbracket^{M,g})
[(\lambda x.\alpha)]^{M,g}
                                                  = that function h such that for any u \in
                                                            D, h(u) = \llbracket \alpha \rrbracket^{M,g[u/x]}
                                                  iff \llbracket \alpha_1 \rrbracket^{M,g} = \llbracket \alpha_2 \rrbracket^{M,g}
\llbracket \alpha_1 = \alpha_2 \rrbracket^{M,g} = 1
\llbracket \neg \phi \rrbracket^{M,g} = 1
                                                  iff \llbracket \phi \rrbracket^{M,g} = 0
\llbracket \phi \wedge \psi \rrbracket^{M,g} = 1
                                                  iff \llbracket \phi \rrbracket^{M,g} = 1 and \llbracket \psi \rrbracket^{M,g} = 1
\llbracket \phi \lor \psi \rrbracket^{M,g}
                                                  iff \llbracket \phi \rrbracket^{M,g} = 1 or \llbracket \psi \rrbracket^{M,g} = 1
\llbracket \phi \to \psi \rrbracket^{M,g} = 1
                                                  iff \llbracket \phi \rrbracket^{M,g} = 0 or \llbracket \psi \rrbracket^{M,g} = 1
\llbracket \exists x. \phi \rrbracket^{M,g} = 1
                                                  iff \llbracket \phi \rrbracket^{M,g[u/x]} = 1 for some u \in D
\llbracket \forall x. \phi \rrbracket^{M,g} = 1
                                                  iff \llbracket \phi \rrbracket^{M,g[u/x]} = 1 for every u \in D.
```


Truth (in terms of Satisfaction)

SPNLP: Lambda Terms, Quantifiers, Satisfaction

Lascarides Klein

Outlir

Typed Lambda Calculus

First Ordei Logic

Truth and Satisfaction

If $\phi \in \mathbf{Term}(\mathsf{BOOL})$, we often write $M, g \models \phi$ instead of $\llbracket \phi \rrbracket^{M,g'} = 1$.

It doesn't matter which g you use for sentences, so:

Truth: A *sentence* ϕ is true in a model M (written

 $M \models \phi$) iff

for any g, M, $g \models \phi$

Validity: A sentence ϕ is valid (written $\models \phi$) iff

for any M, $M \models \phi$

Entailment: $\phi_1, \ldots, \phi_n \models \psi$ iff

if $M, g \models \phi_i$ for all i, $1 \le i \le n$, then $M, g \models \psi$