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Satisfaction We looked at replacing n-ary relations with functions. How
SSEEEl  does this work with transitive verbs?

m Version 1: chase of type <IND, IND >— BOOL
Typed .
Lambda m Version 2: chase of type IND — (IND — BOOL)

Calculus

Advantages of Version 2 (called a curryed function):

m Makes the syntax more uniform.

m Fits better with compositional semantics (discussed
later)



Lambda

SPNLP:

Lambda
Qusnne Lambdas talk about missing information, and where it is.
Satisfaction

m The )\ binds a variable.

m The positions of a A-bound variable in the formula mark

where information is ‘missing’.
Typed

o m Replacing these variables with values fills in the
missing information.

Example:
m \x.(manx) A-abstract
® (Ax.(man x) john) application

m (manjohn) (B-reduction/function application.
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®m IND and BOOL are basic types.

m If o, 7 are types, then so is (¢ — 7). Brackets are

Typed omitted if no ambiguity.

caleulus m For types 7, we have variables Var(r), constants
Con(7).

m Since we are doing first order logic, we will later restrict
variables to Var(IND), but allow constants of any type.
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We define terms Term(7) of type 7:

m Var(7) C Term(r).
i m Con(r) C Term(7).
e m If a € Term(c — 7) and € Term(co) then
(aB) € Term(7) (function application).
m If x € Var(c) and a € Term(p), then Ax.a € Term(7),
where 7 = (o0 — p)



Extending to a First Order Language

SPNLP:
Lambda
Terms,
Quantifiers,

Satisfaction Variables i.e., Var(IND): x,y, z, ..., Xo, X1, X2, . . .
: Boolean connectives:

- BOOL — BOOL (negation)
A BOOL — (BOOL — BOOL) (and)

VvV BOOL — (BOOL — BOOL) (or)

— BOOL — (BOOL — BooL) (if...then)

First Order
togie Quantifiers: v (all)
3 (some)
Equality:
= 71— (7 — BOOL)
Punctuation: brackets and period
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Quantifier Syntax
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Terms,

Sl m If ¢ € Term(BOOL), and x € Var(IND), then Vx.¢ and
Ix.¢ € Term(BOOL).

m x € Var(IND) is called an individual variable.

Syntactic conventions:

foorer m Instead of writing ((= «)8), ((A¢)y), etc., we write
(= a=0), (¢ A¢), ete.
m Instead of writing e.g., ((chase fido) john), we
sometimes write (chase fido john).
m NB this is equivalent to chase(john, fido) on a relational
approach.
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3x.(love x kim)
Kim loves someone
(—3x.(love x kim))
Kim doesn’t love anyone

st order Vx.((robber x) — Jy.((customer y) A (love y x)))
All robbers love a (perhaps different) customer

Jy.((customer y) A Vx.((robber x) — (love y x)))
All robbers love the same customer
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m First occurrence of x is free;

m Second occurrence of x is bound;
Occurrence of y is bound.

First Order m Free variable ~ pronouns.

el m She loves Fido

m Context needed to interpret she;

Something in addition to models so far needed to
interpret free variables.

A WFF (Term(BOOL)) with no free variables is a (closed)
sentence. FOL sentences C WFFs.
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Task:

m Compute whether a sentence is true or false with
respect to a model.

m Is the sentence an accurate description of the situation?

Strategy: Compositionality!
Truth and Use recursion, but:

SEUSEi]

m Subformula of Vx.(robber x) is (robber x) and this is not
a sentence! So...



$%  Satisfaction: [¢]"9 = 1

SPNLP:
Lambda
Terms,

Quantifers, Model M and variable assignment g satisfy the WFF ¢.

SEUSEi]

m g defined for all individual variables, i.e., x € Var(IND);
m g(x) e D.
m If o is an atomic term (€ Con(7) U Var(r)), then

I'Q

9(a) { g(a) if ais avariable

V(o) if o is a constant
Truth and

SEUSEi]

m [3x.¢]M9 = 1 iff [p]M9lv/X] = 1 for some u € D

m glu/x](x) = u
m ‘Try to find some value u for x that makes ¢ true’
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Value of a term in a model

Where M = (D, V):

[o]"9 = i{)(e)

[(a 8)]"9
[(x.c)]Ms

[o1 = ax]M9 =1
[-¢]"9 = 1

[ A )"0 = 1
[o v y]"9

[6 — ¢]"9 =1
[Bx.6]M9 = 1
[vx.¢]"9 =1

iff
iff
iff
iff
iff
iff
iff

« is atomic

[a]™9([B]"9)

that function h such that forany u
D, h(u) = [a]M-9lu/x]

[a1]"9 = [a]M9

[¢]"9 =0

[4]9 = 1 and [¢]"9 = 1
[¢]™9 =1 or [¢]"9 =1
[4]"9 = 0 or [y]"9 = 1
[o]"914/X1 = 1 for some u € D
[¢]V-91v/X1 = 1 for every u € D.



Truth (in terms of Satisfaction)

SPNLP:
Lambda

Terms,
guartficrs | O] /\f Term(BOOL), we often write M, g = ¢ instead of
. [¢]"9" = 1.

It doesn’t matter which g you use for sentences, so:

Truth: A sentence ¢ is true in a model M (written
M = ¢) iff
forany g, M, g = ¢
e Validity: A sentence ¢ is valid (written |= ¢) iff
forany M, M = ¢
Entailment: ¢4,...,¢n E ¢ iff
ifM,gE ¢jforalli,1 <i<n,then M, g
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