SPNLP:
Propositional
Logic,

Predicates
and Functions

Semantics and Pragmatics of NLP
Propositional Logic, Predicates and
Functions

Alex Lascarides & Ewan Klein

School of Informatics
University of Edinburgh

10 January 2008

SPNLP:
Propositional
Logic,

Predicates

and Functions MOtivation
Outline . .
Propositional Logic

Predicates and Functions

Implementing Function expressions in NLTK

Why Bother?

SPNLP:
Propositional

Logic, .
Pregﬁ:lgtes Al m:
and Functions
Lascarides & To associate NL expressions with semantic
representations;

to evaluate the truth or falsity of semantic
representations relative to a knowledge base;

to compute inferences over semantic representations.

Motivation

Strategy:

m Deal with task (1) later, but assume the target is FOL. ..

m Achieve tasks (2)—(3) by associating FOL with models
and rules of inference.

Logics: Syntax and Semantics

SPNLP:
Propositional
Logic,
Predicates
and Functions

Lascarides & Bl A Vocabulary (aka lexicon)

m determines what we can talk about
Syntax
S m Uses vocabulary and syntactic rules to define the set of
Logic well-formed formulas (WFFs)

m determines how we can talk about things
Semantics

m Compositional (uses recursion)
m Truth, Satisfaction, Entailment.

The Language of Propositional Logic, version 1

SPNLP:
Propositional

Logic, Basic expressions:
Predicates
and Functions

Propositional variables p, q, r, pg, p1, - - --
Boolean connectives: — (negation)

A (and)
v (or)
Egz;incositional — (If . then)

Rules of syntax:

Every propositional variable is a well-formed formula
(WFF).

If » and) are WFFs, then so are: —¢, (¢ A), (¢ V),
(¢ —).

Models for Propositional Logic, version 1

SPNLP:
Propositional
Logic,

B e m Interpretation Function: A mapping V from each
Lascarides & propositional variable to the set of truth values {0, 1}.

A Valuation

Propositional

Logic V(p) =1
V(q) =0
V(r)=1

A model M for propositional logic is just a valuation V. For
an arbitrary WFF ¢, we write M = ¢ to mean ¢ is true in
model M.

Models for Propositional Logic, version 1

SPNLP:
Propositional
Logic,
Predicates
and Functions

Recursive definition of truth in a model M = V.

M = p; iff V(p;) =1
Propositional M): _‘¢ iff M l?é ¢
MEgny iff Mi=g¢and M=

ME=gvey iff ME=gor M1
ME¢—y iff MEpor ME 1

Adding Predicates to the Language

SPNLP:
Propositional

Logic,
s oL designed to talk about various relationships and

M properties that hold among individuals.

Terms Unary Predicates Binary Predicates

john dog chase
mary qirl kiss
kim run

Predicates . .

and Functions fido smile

NB: nouns and intransitive verbs treated the same.

The vocabulary constrains the class of models (that is, the
kinds of situation we want to describe).

Models for FOL, version 1

SPNLP:
Propositional
Logic,
Predicates

and Functions m Domain: The collection D of entities we can talk about;

SRR m [nterpretation Function: A mapping V from each
symbol in the vocabulary to its semantic value.

m The arity of a symbol s determines what kind of value
V(s) should be.

Predicates
and Functions

Valuations

V(fido) € D
V(dog) € D
V(chase) C D x D

Valuations for Terms and Predicates

SPNLP:

Propositional
Logic, g
Predicates A Valuation

and Functions
R M = (D, V), where:
D = {dy,d>, 05,0}

V(john) = d V(dog) = {ds}
, V(mary) = d> V(girl) = {d>, d3}
e \/(kim) = d V(run) = {ds}
V(fido) = dy V(smile) = {d;}
V(chase) = {(a2, d3), (a5, d4)}
V(kiSS) = {(dg, d1), (d1 5 dg)}

M= R(ry,...,m) iff (V(r1),... V() € V(R)

Alternative Approach to Predicates

SPNLP:
Propositional
Logic,
Predicates

and Functions m We take function expressions as basic to our language,
corresponding to functions in the model.

Predicates
and Functions

Alternative Approach to Predicates

SPNLP:
Propositional
Logic,
Predicates

and Functions m We take function expressions as basic to our language,
es & corresponding to functions in the model.
m It’s helpful to regard the function expressions as typed;
e.g., a7 combines with expressions of type o to yield
expressions of type 7.

Predicates
and Functions

Alternative Approach to Predicates

SPNLP:
Propositional
Logic,
Predicates

and Functions m We take function expressions as basic to our language,
es & corresponding to functions in the model.
m It’s helpful to regard the function expressions as typed;
e.g., a7 combines with expressions of type o to yield
expressions of type 7.

Predicates
and Functions

Alternative Approach to Predicates

SPNLP:
Propositional
Logic,
Predicates

and Functions m We take function expressions as basic to our language,
ides & corresponding to functions in the model.

m It’s helpful to regard the function expressions as typed;
e.g., 7 combines with expressions of type o to yield
expressions of type 7.

Predicateg . .
and Functions i A Boolean-valued Function Expression

dogIND—>BOOL

i.e., combines with terms to yield expressions with Boolean
values (WFFs).

Functions in the model

SPNLP:

Proposiiona Types are pretty much the same as arities.
ogic,
Predicates

and Functiorls - V(OéIND) c D

Predicates
and Functions

Functions in the model

SPNLP:

Proposiiona Types are pretty much the same as arities.
ogic,
Predicates

aer Functionf. - V(OéIND) c D
m V(aBOO) € {0,1}

Predicates
and Functions

Functions in the model

ST Types are pretty much the same as arities.

Propositional
Logic,
Predicatgs
aer Funcfl(orls - V(OéIND) c D
m V(aBOO) € {0,1}
m V(a”™7) € TS, which is the set of all functions from the
denotations of expressions of type o to the denotations

of expressions of type 7.

Predicates
and Functions

Functions in the model

ST Types are pretty much the same as arities.

Propositional
Logic,
Predicatgs
aer Funcfl(orls - V(OéIND) c D
m V(aBOO) € {0,1}
m V(a”™7) € TS, which is the set of all functions from the
denotations of expressions of type o to the denotations

of expressions of type 7.

Predicates
and Functions

Functions in the model

SPNLP:

Proposiiona Types are pretty much the same as arities.
ogic,
Predicates

aLrld Functviso)rls - V(OéIND) c D
m V(aBOO) € {0,1}
m V(a”™7) € TS, which is the set of all functions from the
denotations of expressions of type o to the denotations
of expressions of type 7.

Predicates
and Functions

Write f : X — Y for a function which takes arguments from
X and maps them to values in Y.

V(aINDﬁBOOL)

V(dog) € {0,1}P = {f | f: D+ {0,1}}

Function Application

SPNLP:
Propositional

oo m If ais of type o — 7 and 3 is of type o, then (a 3) is of

and Functions type T.

i m NB funny syntax (from lambda calculus); more common
is a(/3), but we're going to follow the (a 3) notation in

NLTK.

Derivation of Typed Expression

Predicates
and Functions

(dog fido) BOOL

dog TERM - BOOL fido TERM

Denotation of Function Expressions

SPNLP:
Propositional

Logic, .y .
el m Every set A corresponds to a characteristic function fa

and Functions such that fA(X) =1iff x € A.

Predicates
and Functions

Denotation of Function Expressions

SPNLP:
Propositional

Logic, .y .
el m Every set A corresponds to a characteristic function fa

and Funtions such that f4(x) = 1 iff x € A.
m Equivalently, define A= {x | fa(x) = 1}.

Predicates
and Functions

Denotation of Function Expressions

SPNLP:
Propositional

Logic, .y .
el m Every set A corresponds to a characteristic function fa

and Functions such that f4(x) = 1 iff x € A.

m Equivalently, define A= {x | fa(x) = 1}.

m So given the denotation A C D of some unary
predicate, we have a corresponding f4 € {0,1}P.

Predicates
and Functions

Denotation of Function Expressions

SPNLP:
Propositional

Logic, .y .
el m Every set A corresponds to a characteristic function fa

and Functions such that f4(x) = 1 iff x € A.

m Equivalently, define A= {x | fa(x) = 1}.

m So given the denotation A C D of some unary
predicate, we have a corresponding f4 € {0,1}P.

Predicates
and Functions

Denotation of Function Expressions

SPNLP:
Propositional

Logic, .y .
el m Every set A corresponds to a characteristic function fa

and Functions such that f4(x) = 1 iff x € A.

m Equivalently, define A= {x | fa(x) = 1}.

m So given the denotation A C D of some unary
predicate, we have a corresponding f4 € {0,1}P.

Predicates 0 -
and Functions il dog as a function expression

0

V(dog) =

&
il

0
0
1

Evaluating Function Application

SPNLP:
Propositional
Logic,
Predicates
and Functions

La

M = (a!ND~BOOL GIND) if V() (V(5)) = 1

Evaluating dog as a function expression
Predicates

B /(dog)(V(kim)) =0
V(dog)(V(fido)) = 1

Python Dictionaries

SPNLP: . . . o
Propositional m Accessing items by their names, e.g., dictionary
Logic,
Predicates
and Functions

Implementing
Function
expressions in
NLTK

SPNLP:
Propositional
Logic,
Predicates
and Functions

L

Implementing
Function
expressions in
NLTK

Python Dictionaries

m Accessing items by their names, e.g., dictionary
m Defining entries:

>>> d = {}

>>> d[’colourless’] = ’adj’
>>> d[’furiously’] = ’adv’
>>> d[’ideas’] = ’n’

Python Dictionaries

SPNLP: . . . o
Propositional m Accessing items by their names, e.g., dictionary
Logic,

Predicates ™ Defining entries:

and Functions

L & >>> d = {}

>>> d[’colourless’] = ’adj’
>>> d[’furiously’] = ’adv’
>>> d[’ideas’] = ’n’

m {} is an empty dictionary; ’colourless’ is a key; ’adj’ is a
value.

Implementing
Function
expressions in
NLTK

SPNLP:
Propositional
Logic,
Predicates
and Functions

L

Implementing
Function
expressions in
NLTK

Python Dictionaries

m Accessing items by their names, e.g., dictionary
m Defining entries:

>>> d = {}

>>> d[’colourless’] = ’adj’
>>> d[’furiously’] = ’adv’
>>> d[’ideas’] = ’n’

m {} is an empty dictionary; ’colourless’ is a key; ’adj’ is a
value.

m Accessing:

>>> d.keys()

[’furiously’, ’colourless’, ’ideas’]

>>> d[’ideas’]

7n)

>>> d

{’furiously’: ’adv’, ’colourless’: ’adj’, ’ideas’:

Functions as Dictionaries

SPNLP:
Propositional m We can use dictionaries to implement functions; the

e arguments are the keys and the values are the ... values!
and Functions

L

Implementing
Function
expressions in
NLTK

Functions as Dictionaries

SPNLP: .y . . .
Propositional m We can use dictionaries to implement functions; the
N arguments are the keys and the values are the ... values!

and Functions

m dog again — we use strings >d1’ etc for the keys
(representing individuals in D), and the built-in Boolean
types True and False as values.

>>> dog = {}

>>> dog[’d1’] = False

>>> dog[’d2’] = False

>>> dogl[’d3’] = False
Implementing >>> dog[’d4’] = True

Function >>> dog
expressions in

NLTK {’d4’: True, ’d2’: False, ’d3’: False, ’d1’: False}

Functions as Dictionaries

SPNLP: .y . . .
Propositional m We can use dictionaries to implement functions; the
N arguments are the keys and the values are the ... values!

and Functions

m dog again — we use strings >d1’ etc for the keys
(representing individuals in D), and the built-in Boolean
types True and False as values.

>>> dog = {}
>>> dogl[’d1’] = False
>>> dog[’d2’] = False
>>> dogl[’d3’] = False
Implementing >>> dog[’d4’] = True
Functiog : >>> dog
expressions in
NLTK {’d4’: True, ’d2’: False, ’d3’: False, ’d1’: False}

Exercise

Define the function corresponding to the set value of the predicate
girl.

SPNLP:
Propositional
Logic,
Predicates
and Functions

L

Implementing
Function
expressions in
NLTK

Valuations in nltk.sem, 1

>>> from nltk.sem import Valuation
>>> val = Valuation({’Mary’: ’d2’, ’Fido’: ’d4’, ’do
>>> val
{’Fido’: °d4’, ’Mary’: ’d2’, ’dog’: {’d4’: Truel}}
>>> val[’dog’]
{’d4’: True}
>>> val[’dog’] [val[’Fido’]]
True
>>> val[’dog’] [val[’Mary’]]
Traceback (most recent call last):
File "<stdin>", line 1, in 7
KeyError: ’d2’

m Omitting the False entries:

SPNLP:
Propositional
Logic,
Predicates
and Functions

L

Implementing
Function
expressions in
NLTK

Valuations in nltk.sem, 1

>>> from nltk.sem import Valuation
>>> val = Valuation({’Mary’: ’d2’, ’Fido’: ’d4’, ’do
>>> val
{’Fido’: °d4’, ’Mary’: ’d2’, ’dog’: {’d4’: Truel}}
>>> val[’dog’]
{’d4’: True}
>>> val[’dog’] [val[’Fido’]]
True
>>> val[’dog’] [val[’Mary’]]
Traceback (most recent call last):
File "<stdin>", line 1, in 7
KeyError: ’d2’

m Omitting the False entries:
B more succinct, but we need a wrapper to get the
negative cases.

	Outline
	Motivation
	Propositional Logic
	Predicates and Functions
	Implementing Function expressions in NLTK

