

Lascarides & Klein

Outline

Meaning and NLP

The Influence o Logic

Computationa Semantics

Computationa Pragmatics

Semantics and Pragmatics of NLP Overview

Alex Lascarides & Ewan Klein

School of Informatics University of Edinburgh

10 January 2008

Lascarides & Klein

Outline

Meaning and NLP

The Influence of Logic

Computationa Semantics

Computational Pragmatics

1 Meaning and NLP

2 The Influence of Logic

3 Computational Semantics

4 Computational Pragmatics

Welcome to SPNLP! First, Some Admin

SPNLP: Overview

Lascarides & Klein

Outline

Meaning and NLP

The Influence of Logic

Computationa Semantics

Computationa Pragmatics Course notes 1:

 Patrick Blackburn and Johan Bos (2005) Representation and Inference for Natural Language: A first course in computational semantics, CSLI Publications.

Available from all good bookshops, including Amazon. It costs $\pounds 19$ on Amazon. Buy it ASAP!

- Course notes 2:
 - Steven Bird, Ewan Klein and Edward Loper (2008?) Natural Language Processing In Python, available online from http://nltk.sourceforge.net/index.php/Book. See especially Chapter 12 (computational semantics) and Chapter 2 (intro to Python for NLP). Available as HTML and PDF.

Reading for this week

SPNLP: Overview

Lascarides & Klein

Outline

Meaning and NLP

The Influence o Logic

Computationa Semantics

Computational Pragmatics

Blackburn and Bos Volume I: Introduction, pp.xi–xvi.

Blackburn and Bos Volume I: Chapter 1, pp.1–29.

NLTK Book Chapter 12, up to and including Section 12.4.

イロン 不得と イヨン イヨン 三日

Reading for this week

SPNLP: Overview

Lascarides & Klein

Outline

Meaning and NLP

The Influence o Logic

Computationa Semantics

Computationa Pragmatics

- Blackburn and Bos Volume I: Introduction, pp.xi-xvi.
- Blackburn and Bos Volume I: Chapter 1, pp.1–29.

NLTK Book Chapter 12, up to and including Section 12.4.

Reading for this week

SPNLP: Overview

Lascarides & Klein

Outline

Meaning and NLP

The Influence o[.] Logic

Computationa Semantics

Computational Pragmatics

- Blackburn and Bos Volume I: Introduction, pp.xi-xvi.
- Blackburn and Bos Volume I: Chapter 1, pp.1–29.
- NLTK Book Chapter 12, up to and including Section 12.4.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

More Admin

SPNLP: Overview

Lascarides & Klein

Outline

Meaning and NLP

- The Influence of Logic
- Computationa Semantics
- Computationa Pragmatics

- If you're taking this course for credit, you also need to register this with the ITO.
- No tutorials for this course, but:
 - contact EK by email for an appointment: ewan@inf.ed.ac.uk
 - AL has office hours on Wednesdays, 11am to 12 noon, in office number 8, 2FL 2 Buccleuch Place.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

SPNLP: Overview

Lascarides & Klein

Outline

Meaning and NLP

The Influence of Logic

Computationa Semantics

Computationa Pragmatics

Some terminology ...

semantics

- pragmatics
- natural language
- processing

NLP vs. CL

SPNLP: Overview

Lascarides & Klein

Outline

Meaning and NLP

The Influence o Logic

Computationa Semantics

Computationa Pragmatics

Some terminology ...

semantics

- pragmatics
- natural language
- processing

NLP vs. CL

・ロト・御ト・言ト・言・ 一日・ 今々で

SPNLP: Overview

Lascarides & Klein

Outline

Meaning and NLP

The Influence o Logic

Computationa Semantics

Computationa Pragmatics

Some terminology

semantics

pragmatics

natural language

processing

NLP vs. CL

うしん 前 ふかく ボット 雪 くらく

SPNLP: Overview

Lascarides & Klein

Outline

Meaning and NLP

The Influence o Logic

Computationa Semantics

Computationa Pragmatics

Some terminology

- semantics
- pragmatics
- natural language
- processing

NLP vs. CL

SPNLP: Overview

Lascarides & Klein

Outline

Meaning and NLP

The Influence o Logic

Computationa Semantics

Computationa Pragmatics

Some terminology

- semantics
- pragmatics
- natural language
- processing

NLP vs. CL

SPNLP: Overview

Lascarides & Klein

Outline

Meaning and NLP

The Influence o Logic

Computationa Semantics

Computational Pragmatics

Some terminology

- semantics
- pragmatics
- natural language
- processing

NLP vs. CL

・ロト・西ト・山田・山田・山市・

${\sf Meaning} \, \text{ in } \, {\sf NLP}$

SPNLP: Overview

Lascarides & Klein

Outline

Meaning and NLP

- The Influence o[.] Logic
- Computationa Semantics
- Computationa Pragmatics

Appeals to meaning are pervasive (but not always explicit)

◆□▶ ◆□▶ ★∃▶ ★∃▶ = のQ@

Information Retrieval

- Information Extraction
- Summarization
- Question Answering
- Spoken Dialogue Systems

${\sf Meaning} \, \text{ in } \, {\sf NLP}$

SPNLP: Overview

Lascarides & Klein

Outline

Meaning and NLP

- The Influence o Logic
- Computationa Semantics
- Computationa Pragmatics

Appeals to meaning are pervasive (but not always explicit)

- Information Retrieval
- Information Extraction
- Summarization
- Question Answering
- Spoken Dialogue Systems

${\sf Meaning} \, \text{ in } \, {\sf NLP}$

SPNLP: Overview

Lascarides & Klein

Outline

Meaning and NLP

The Influence o Logic

Computationa Semantics

Computationa Pragmatics Appeals to meaning are pervasive (but not always explicit)

- Information Retrieval
- Information Extraction
- Summarization
- Question Answering
- Spoken Dialogue Systems

Meaning in NLP

SPNLP: Overview

Lascarides & Klein

Outline

Meaning and NLP

The Influence o Logic

Computationa Semantics

Computationa Pragmatics Appeals to meaning are pervasive (but not always explicit)

- Information Retrieval
- Information Extraction
- Summarization
- Question Answering
- Spoken Dialogue Systems

Meaning in NLP

SPNLP: Overview

Lascarides & Klein

Outline

Meaning and NLP

The Influence o Logic

Computationa Semantics

Computationa Pragmatics Appeals to meaning are pervasive (but not always explicit)

- Information Retrieval
- Information Extraction
- Summarization
- Question Answering
- Spoken Dialogue Systems

Named-Entity Recognition

SPNLP: Overview

Lascarides & Klein

Outline

Meaning and NLP

The Influence o Logic

Computationa Semantics

Computationa Pragmatics

NER Example

<namex type="LOCATION">NAIROBI<namex/>, <namex</pre>

type="LOCATION">Kenya<namex/> (<namex type="ORGANIZATION">AP<namex/>) _
<numex type="CARDINAL">Thousands<numex/> of laborers, students and opposition
politicians on <timex type="DATE">Saturday<timex/> protested tax hikes imposed by their
cash-strapped government, which they accused of failing to provide basic services. Beneath a
scorching sun, they sang anti-government songs and chanted "<namex
type="PERSON">Moi<namex/> must go," showing their derision for President <namex</pre>

type="PERSON">Daniel arap Moi<namex/>, <namex

type="LOCATION">Kenya<namex/>'s ruler for <timex type="DURATION">20 years<timex/>. By voice vote, the <numex type="CARDINAL">5,000<numex/> protesters approved a resolution calling for the government to scrap new taxes, convene a convention to write a new Constitution, stop harassing students and street vendors, and halt ethnic violence.

Textual Inference

SPNLP: Overview

Lascarides & Klein

Outline

Meaning and NLP

The Influence of Logic

Computationa Semantics

Computationa Pragmatics

RTE Example 1

Text Never before had ski racing, a sport dominated by monosyllabic mountain men, seen the likes of Alberto Tomba, the flamboyant Bolognese flatlander who at 21 captured two gold medals at the Calgary Olympics.

・ロト ・戸 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Hypothesis Alberto Tomba won a race.

Textual Inference

SPNLP: Overview

Lascarides & Klein

Outline

Meaning and NLP

The Influence of Logic

Computationa Semantics

Computationa Pragmatics

RTE Example 2

Text Claude Chabrol (born June 24, 1930) is a French movie director and has become well-known in the 40 years since his first film, Le Beau Serge, for his chilling tales of murder, including Le Boucher.

◆□▶ ◆□▶ ★∃▶ ★∃▶ = のQ@

Hypothesis Le Boucher was made by a French movie director.

Textual Inference

SPNLP: Overview

Lascarides & Klein

Outline

Meaning and NLP

The Influence of Logic

Computationa Semantics

Computationa Pragmatics

RTE Example 3

Text David Golinkin is the editor or author of eighteen books, and over 150 responsa, articles, sermons and books.

◆□▶ ◆□▶ ★∃▶ ★∃▶ = のQ@

Hypothesis Golinkin has written eighteen books.

Logic & Semantics of Natural Language

SPNLP: Overview

Lascarides & Klein

Outline

Meaning and NLP

The Influence of Logic

Computationa Semantics

Computationa Pragmatics

Syllogistic logic

Formalizing mathematical reasoning (Frege)

(□) (圖) (E) (E) (E)

Calculus for describing valid inference

Logic & Semantics of Natural Language

SPNLP: Overview

Lascarides & Klein

Outline

Meaning and NLP

The Influence of Logic

Computationa Semantics

Computationa Pragmatics

Syllogistic logic

Formalizing mathematical reasoning (Frege)

◆□▶ ◆□▶ ★∃▶ ★∃▶ = のQ@

Calculus for describing valid inference

Logic & Semantics of Natural Language

SPNLP: Overview

- Lascarides & Klein
- Outline
- Meaning and NLP
- The Influence of Logic
- Computationa Semantics
- Computational Pragmatics

- Syllogistic logic
- Formalizing mathematical reasoning (Frege)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Calculus for describing valid inference

Propositional Logic

Lascarides & Klein

Outline

Meaning and NLP

The Influence of Logic

Computationa Semantics

Computationa Pragmatics $\frac{\phi \wedge \psi}{\phi} \quad \frac{\phi \wedge \psi}{\psi}$

Coordination Example

Kim is walking and Kim is chewing gum

Kim is walking

Double Negation Example

Kim doesn't not chew gum

Kim chews gum

Truth Conditions and Logical Consequence

SPNLP: Overview

- Lascarides & Klein
- Outline
- Meaning and NLP
- The Influence of Logic
- Computationa Semantics
- Computationa Pragmatics

- A minimal criterion for knowing the meaning of a sentence *φ*:
 - knowing whether ϕ is true or false in a state of affairs.
- Whenever ϕ is true in some state of affairs s, ψ is also true in s.

- Logical consequence: $\phi \models \psi$
- For NL, will mostly use First Order Logic (FOL) discussed later.

- Lascarides & Klein
- Outline
- Meaning and NLP
- The Influence of Logic
- Computationa Semantics
- Computationa Pragmatics

 A minimal criterion for knowing the meaning of a sentence *φ*:

knowing whether ϕ is true or false in a state of affairs.

• Whenever ϕ is true in some state of affairs s, ψ is also true in s.

- Logical consequence: $\phi \models \psi$
- For NL, will mostly use First Order Logic (FOL) discussed later.

- Lascarides & Klein
- Outline
- Meaning and NLP
- The Influence of Logic
- Computationa Semantics
- Computationa Pragmatics

 A minimal criterion for knowing the meaning of a sentence *φ*:

knowing whether ϕ is true or false in a state of affairs.

• Whenever ϕ is true in some state of affairs s, ψ is also true in s.

- Logical consequence: $\phi \models \psi$
- For NL, will mostly use First Order Logic (FOL) discussed later.

- Lascarides & Klein
- Outline
- Meaning and NLP
- The Influence of Logic
- Computationa Semantics
- Computationa Pragmatics

 A minimal criterion for knowing the meaning of a sentence *φ*:

knowing whether ϕ is true or false in a state of affairs.

• Whenever ϕ is true in some state of affairs s, ψ is also true in s.

- Logical consequence: $\phi \models \psi$
- For NL, will mostly use First Order Logic (FOL) discussed later.

SPNLP: Overview

Lascarides & Klein

Outline

Meaning and NLP

The Influence of Logic

Computationa Semantics

Computationa Pragmatics

Usually we make inferences relative to a set Γ of background assumptions:

 $\blacksquare \ \mathsf{\Gamma} \cup \{\phi\} \models \psi$

- Part of this consists of conceptual knowledge or an ontology
- AI Frame-based systems

Faxonomic Hierarchy

terrier isa canine isa mammal

Can be formalized in (fragments of) First Order Logic.

SPNLP: Overview

Lascarides & Klein

Outline

Meaning and NLP

The Influence of Logic

Computationa Semantics

Computationa Pragmatics Usually we make inferences relative to a set Γ of background assumptions:

 $\blacksquare \ \mathsf{\Gamma} \cup \{\phi\} \models \psi$

Part of this consists of conceptual knowledge — or an ontology

Al Frame-based systems

Taxonomic Hierarchy

terrier isa canine isa mammal . . .

Can be formalized in (fragments of) First Order Logic.

SPNLP: Overview

Lascarides & Klein

Outline

Meaning and NLP

The Influence of Logic

Computationa Semantics

Computationa Pragmatics Usually we make inferences relative to a set Γ of background assumptions:

 $\blacksquare \ \mathsf{\Gamma} \cup \{\phi\} \models \psi$

Part of this consists of conceptual knowledge — or an ontology

AI Frame-based systems

Taxonomic Hierarchy

terrier isa canine isa mammal

Can be formalized in (fragments of) First Order Logic.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ う へ つ ・

SPNLP: Overview

Lascarides & Klein

Outline

Meaning and NLP

The Influence of Logic

Computationa Semantics

Computationa Pragmatics Usually we make inferences relative to a set Γ of background assumptions:

 $\blacksquare \ \mathsf{\Gamma} \cup \{\phi\} \models \psi$

Part of this consists of conceptual knowledge — or an ontology

AI Frame-based systems

Taxonomic Hierarchy

terrier isa canine isa mammal ...

Can be formalized in (fragments of) First Order Logic.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ う へ つ ・

SPNLP: Overview

Lascarides & Klein

Outline

Meaning and NLP

The Influence of Logic

Computationa Semantics

Computationa Pragmatics Usually we make inferences relative to a set Γ of background assumptions:

 $\blacksquare \ \mathsf{\Gamma} \cup \{\phi\} \models \psi$

Part of this consists of conceptual knowledge — or an ontology

AI Frame-based systems

Taxonomic Hierarchy

terrier isa canine isa mammal

• Can be formalized in (fragments of) First Order Logic.

Logic and Computation

SPNLP: Overview

- Lascarides & Klein
- Outline
- Meaning and NLP
- The Influence of Logic
- Computationa Semantics
- Computationa Pragmatics

Reasoning with bounded resources

Automatic Theorem Proving

- Decidability
- Complexity

Logic and Computation

SPNLP: Overview

- Lascarides & Klein
- Outline
- Meaning and NLP
- The Influence of Logic
- Computationa Semantics
- Computationa Pragmatics

- Reasoning with bounded resources
 - Automatic Theorem Proving

- Decidability
- Complexity

Logic and Computation

SPNLP: Overview

Lascarides & Klein

Outline

Meaning and NLP

The Influence of Logic

Computationa Semantics

Computationa Pragmatics

Reasoning with bounded resources

Automatic Theorem Proving

- Decidability
- Complexity

NLP vs. CL Again

SPNLP: Overview

Lascarides & Klein

Outline

Meaning and NLP

The Influence o Logic

Computational Semantics

Computationa Pragmatics

What can semantics do for NLP?

What can computation do for theoretical models of NL semantics?

イロト (得) (日) (日) (日) (日) (の)

NLP vs. CL Again

SPNLP: Overview

- Lascarides & Klein
- Outline
- Meaning and NLP
- The Influence o Logic
- Computational Semantics
- Computational Pragmatics

- What can semantics do for NLP?
- What can computation do for theoretical models of NL semantics?

Automating Language Comprehension

SPNLP: Overview

- Lascarides & Klein
- Outline
- Meaning and NLP
- The Influence o Logic

Computational Semantics

Computationa Pragmatics

- 1 Automate the process of associating NL expressions with semantic representations or *logical forms*;
- 2 Automate the process of interpreting those logical forms and drawing inferences from them.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Challenges

SPNLP: Overview

Lascarides & Klein

Outline

Meaning and NLP

The Influence of Logic

Computationa Semantics

Computationa Pragmatics

Unlimited number of NL expressions!

- Handled with Compositionality: The logical form of each phrase is a function of the logical forms of its syntactic parts.
- 2 Tension between expressibility, inferential power and complexity.
 - There is no perfect solution (Tarski)! In practice, people tailor logic to the application. We will focus on FOL.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ●

Big Challenge: Ambiguity!

SPNLP: Overview

Lascarides & Klein

Outline

Meaning and NLP

The Influence of Logic

Computationa Semantics

Computational Pragmatics A semantic scope ambiguity...

Every man loves a woman $\forall x(man(x) \rightarrow \exists y(woman(y) \land loves(x, y)))$ $\exists y(woman(x) \land \forall x(man(x) \rightarrow loves(x, y)))$

...and its interaction with anaphora

Every student worked on a project. It was about computational semantics. Every politician made a speech. ??It was about Iraq.

ション ふゆ アメリア イロア しょうくの

More Challenges: Combinatorics!

SPNLP: Overview

Lascarides & Klein

Outline

Meaning and NLP

The Influence o Logic

Computational Semantics

Computational Pragmatics Constructing the LF directly from the NL's syntax means that the quantifier scope ambiguity must correspond to a syntactic ambiguity. So:

every man loves a woman has two parses: unintuitive

くしゃ 本語 やく キャー キー うらう

- 6 quantifiers \Rightarrow 756 parses!!
- Unsophisticated interaction with pragmatics
 - Generate all possible LFs
 - Filter out inadmissible ones

An Alternative: Underspecified Semantics

SPNLP: Overview

- Lascarides & Klein
- Outline
- Meaning and NLP
- The Influence of Logic

Computational Semantics

Computationa Pragmatics

- Use syntax to accumulate a set of *constraints* on the *form* of the logical form.
 - A partial description of trees such as these...

イロン 不得と イヨン イヨン 三日

The Underspecified Logical Form

◆□▶ ◆□▶ ★∃▶ ★∃▶ = のQ@

1 $l_4 = l_2$ and $l_5 = l_3$ 2 $l_4 = l_3$ and $l_5 = l_1$

More Challenges: Semantic Dependencies between an NL Phrase and its Context

SPNLP: Overview

Lascarides & Klein

Outline

Meaning and NLP

The Influence of Logic

Computational Semantics

Computational Pragmatics

John owns a car. It is red.

wrong:
$$\exists x (car(x) \land own(j, x)) \land red(y)$$

omplex construction: $\exists x (car(x) \land own(j, x) \land red(x))$

Time

С

Pronouns

John entered the room. He lit a cigarette. It was pitch dark.

Presuppositions

John's son is bald. If baldness is hereditary, then John's son is bald. If John has a son, then John's son is bald.

Dynamic Semantics: E.g., DRT

SPNLP: Overview

- Lascarides & Klein
- Outline
- Meaning and NLP
- The Influence o Logic

Computational Semantics

Computationa Pragmatics

- The meaning of an expression depends on its *context*.
- An expression changes that input context into a different output one:
 - Existentials change the context by adding new entities to it for interpreting subsequent expressions.

DRT: The Successes

SPNLP: Overview

Lascarides & Klein

Outline

Meaning and NLP

The Influence of Logic

Computational Semantics

Computational Pragmatics

Pronouns

A man walks. He talks. Few farmers own a donkey. ?It's fed twice a day.

Tense

Max stood up. John greeted him. Max entered the room. It was pitch dark.

Presuppositions

If baldness is hereditary, then John's son is bald. If John has a son, then John's son is bald.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Problems

Need Pragmatics!

◆□▶ ◆□▶ ★∃▶ ★∃▶ = のQ@

SPNLP: Overview

Lascarides & Klein

Outline

Meaning and NLP

The Influence o[.] Logic

Computationa Semantics

Computational Pragmatics

Counterexamples

John can open Bill's safe. He knows the combination. Max fell. John pushed him. If John scuba dives, he'll bring his son. *vs.* If John scuba dives, he'll bring his regulator.

Need to resolve semantic underspecification to pragmatically preferred values.

The Semantics/Pragmatics Interface

SPNLP: Overview

Lascarides & Klein

Outline

Meaning and NLP

The Influence of Logic

Computationa Semantics

Computational Pragmatics

- Pragmatics is the study of what people meant, but didn't explicitly say.
- Linguistic form underdetermines content;
 Pragmatics: commonsense reasoning about the *context* provides more specific content:
 - Lexical content
 - World knowledge
 - conventions of language use
 - beliefs and intentions of dialogue participants
- The process of constructing the 'intended' LF involves defaults.

Interaction between context and interpretation must be automated.

Conclusions

SPNLP: Overview

Lascarides & Klein

Outline

Meaning and NLP

The Influence of Logic

Computationa Semantics

Computationa Pragmatics Computational semantics and pragmatics:

- automatic construction of semantic representations for NL expressions (in context)
- automatic inferences over the representations

Major Issues:

- Ambiguity of various kinds:
 - lexical, syntactic, semantic scope
- Interface between LF from linguistic form and context of use (essential for modelling *anaphora*).

Tools used include:

Information: syntax, world knowledge, lexical semantics, corpora,...

Inference: logic (model checkers and theorem proving), machine learning, statistics.