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Abstract modifications, or impose a high performance penalty. In
any case, their security benefits are open to debate: mit-

Current software attacks often build on exploits that sugations are usually of limited scope, and attackers have
vert machine-code execution. The enforcement of a bafgignd ways to circumvent each deployed mitigation mech-
safety property, Control-Flow Integrity (CFI), can preveninism [41, 48, 60].
such attacks from arbitrarily controlling program behav- The limitations of these mechanisms stem, in part, from
ior. CFI enforcement is simple, and its guarantees canthe lack of a realistic attack model and the reliance on infor-
established formally, even with respect to powerful advefal reasoning and hidden assumptions. In order to be trust-
saries. Moreover, CFl enforcement is practical: it is comorthy, mitigation techniques should—given the ingenuity
patible with existing software and can be done efficieniy would-be attackers and the wealth of current and undis-
using software rewriting in commodity systems. Finallgovered software vulnerabilities—be simple to comprehend
CFlI provides a useful foundation for enforcing further sand to enforce, yet provide strong guarantees against pow-
curity policies, as we demonstrate with efficient softwaggful adversaries. On the other hand, in order to be deploy-
implementations of a protected shadow call stack anda®fie in practice, mitigation techniques should be applicable
access control for memory regions. to existing code (preferably even to legacy binaries) and in-
cur low overhead.

This paper describes and studies one mitigation tech-
nique, the enforcement dtontrol-Flow Integrity (CFl),
tq%t aims to meet these standards for trustworthiness and

Computers are often subject to external attacks that aim

control software behavior. Typically, such attacks arrive ggployablllty. The paper introduces CFI enforcement,

s Ipresents an implementation for Windows on the x86 archi-
data over a regular communication channel and, once res-

ident in program memory, they trigger a pre-existing SOga_cture, gives results from experiments, and suggests appli-

ware flaw. By exploiting such flaws, the attacks can subvgrtlons’ explorlng two a_tppllc_:atlons in detail. .
he CFI security policy dictates that software execution

execution and gain control over software behavior. For in-

. . . must follow a path of &ontrol-Flow Graph(CFG) deter-
stance, a buffer overflow in an application may result in a

mined ahead of time. The CFG in question can be defined

call to a sensitive system function, possibly a function tf@f analvsis—source-code analvsis. binary analvsis. or ex
the application was never intended to use. The combined y ysIs, y ysIs,

effects of these attacks make them one of the most preS%acutlon profiling. For our experiments, we focus on CFGs

in . O .
. . haq are derived by a static binary analysis. CFGs can also
challenges in computer security.

. : . .. . be defined by explicit security policies, for example written
In recent years, many ingenious vulnerability mitigations :
security automata [17].

have been proposed for defending against these attac 5\ security policy is of limited value without an attack

these include stack canaries [14], runtime elimination of . .
[14] model. In our design, CFl enforcement provides protec-

buffer overflows [45], randomization and artificial heter(%.- . .

eneity [40,61], and tainting of suspect data [54] Somlgn even against powerful adversaries that have full control
9 S . . ' pyer the entire data memory of the executing program. This
of these mitigations are widely used, while others may be

impractical for example because thev rely on hardwanPOdeI of adversaries may seem rather pessimistic. On the
P ' P y rely o'&er hand, it has a number of virtues. First, it is clear, and
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amenable to formal definition and analysis. It also allowses and applies to existing x86 Windows binaries. Its per-
for the real possibility that buffer overflows or other vulnefermance on popular programs, including the SPEC bench-
abilities (e.qg., [25]) would lead to arbitrary changes in dataark suite, gives evidence of its efficiency. Building on

memory. Finally, it applies even when an attacker is in a&CFI, we develop an implementation of a protected user-
tive control of a module or thread within the same addrdssel shadow call stack. To the best of our knowledge, this
space as the program being protected. implementation is an order-of-magnitude faster than previ-

Whereas CFl enforcement can potentially be done in sés software implementations with the same level of pro-
eral ways, we rely on a combination of lightweight stati€ction. Since SFI for x86 has been relatively slow and
verification and machine-code rewriting that instrumerfi@mplex, we also examine the overhead of a simple CFI-
software with runtime checks. The runtime checks djased method for enforcing the standard SFI policy on x86;
namically ensure that control flow remains within a givegain, our measurements indicate an order-of-magnitude
CFG. As we demonstrate, machine-code rewriting resu¢rhead reduction.
in a practical implementation of CFI enforcement. This im- We have formally proven the correctness of inlined CFI
plementation applies to existing programs on commod@pforcement for an abstract machine with a simplified in-
systems, and yields efficient code. Although machine-cagigction set. This formal treatment of inlined CFI enforce-
rewriting can be rather elaborate, it is simple to verify thgent contributes to assurance and served as a guide in our
proper use of instrumentation in order to ensure inlined GFsign. We have also analyzed a combination of CFl and
enforcement. SMAC, similarly.

CFI enforcement is effective against a wide range of The next section, Section 2, discusses related work. Sec-

common attacks, since abnormal control-flow modiﬁcﬁon 3 informally explains CFl and its inlined enforcement.
tion is an essential step in many exploits—independen#igction 4 describes our main CFl implementation and gives
of whether buffer overflows and other vulnerabilities aferformance results. It also reports on our security-related
being exploited [41,60]. We have examined many coxperiments. Section 5 shows how additional security en-
crete attacks and found that CFl enforcement prevents nfgsgement can be built on CFI; it includes a discussion of
of them. These include both classic, stack-based buff&@Ms and three important examples: faster SFI, SMAC,
overflow attacks and newer, heap-based “jump4be” at- and a protected shadow call stack. Section 6 summarizes
tacks. They also include recently described “pointer suir formal work; a technical report [1] contains further de-
terfuge” attacks, which foil many previous mitigation techails. Finally, Section 7 concludes.

niques. Of course, CFl enforcement is not a panacea: ex-

ploits within the bounds of the allowed CFG (e.g., [10]) are

not prevented. These include, for example, certain exploks Related Work

that rely on incorrect argument-string parsing to cause the
improper launch of a dangerous executable. Our work on CFl is related to various techniques that have

No matter how the CFG is defined or how permissi\li@e” developed for constraining control flow. A rather
it is, CFI can be used as a foundation for the enforcem&fad discussion of related work is appropriate, hence the
of more sophisticated security policies, including those tH&Rgth of this section; however, the section may be skipped
prevent higher-level attacks. For example, CFI can prevf@ first reading of the paper.
the circumvention of two well-known enforcement mech- For the purposes of the present section, we divide those
anisms,Inlined Reference MonitordRMs) and Software techniques according to whether they aim to achieve secu-
Fault Isolation (SFI) [16,17,59]. In particular, CFI canfity or fault-tolerance.
help protect security-relevant information such as a shadow
call stack, which can be used for placing tighter restriﬁ—1
tions on control flow. Further, CFI can serve as the basis

of a generalized, efficient variant of SFI that we cadift- Constraining control flow for security purposes is not new.
ware Memory Access ContrBMAC), which is embodied For example, computer hardware has long been able to pre-
in an inlined reference monitor for access to memory fgant execution of data memory, and the latest x86 proces-
gions. SMAC, in turn, can serve for eliminating some Clsbrs support this feature. At the software level, several ex-
assumptions. isting mitigation techniques constrain control flow in some
Concretely, we develop fast and scalable implementeay, for example by checking stack integrity and validat-
tions of CFI. We focus on one that provides strong guarang function returns [14, 42], by encrypting function point-

CFI and Security
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ers[13, 61], or even by interpreting software using the ted¢hes, while stronger than strictly necessary for IRMs, imply

niques of dynamic machine-code translation [28]. the required control-flow properties, and thereby CFI can
Clearly, this a crowded, important research area (e.g.,§8rve as a foundation for efficient IRM implementation. We

7,9,12,15,21, 29, 32, 36, 38, 40, 45, 54, 55]). Next vedaborate on some of these points in Section 5.

elaborate on some of the pieces of work most closely re-

lated to ours. In short, we believe that the distinguishinginerability Mitigation Techniques with Secrets
features of CFI are its simplicity, its trustworthiness anebintGuard [13] stores code addresses in an encrypted
amenability to formal analysis, its strong guarantees evefidim in data memory. The intent is that, even if attackers
the presence of a powerful adversary with full control ovean change data memory, they cannot ensure that control
data memory, and its deployability, efficiency, and scalfows to a code address of their choice: for this, they would
bility. Like many language-based security techniques, Ij#ve to know the corresponding decryption key. Several
unlike certain systems for intrusion detection, CFl enforcgther techniques [7, 14,40, 55,61] also rely on secret
ment cannot be subverted or circumvented even thougbdfues that influence the semantics of pointer addresses
applies to the inner workings of user-level programs (N§tbred in memory, For instance, PaX ASLR shuffles the
just at the system call boundary). virtual-address-space layout of a process at the time of
its creation, using a random permutation derived from

SFI and Inlined Reference Monitors IRMs are a gen- & Per-process secret [40]. Some of these vulnerability
eral technique for enforcing fine-grained security policigdtigation schemes, such as the PaX Linux kernel patch,
through inlined checks [16,17]. SFI is an important, spglay be applied even to unmodified legacy binaries. Others
cial IRM that peforms dynamic checks for the purposes &N be more difficult to adopt, for example when they
memory protection [17, 33, 49, 59]. SFI and other IRMs of2duire complex source-code analysis.
erate by adding code for security checks into the programynfortunately, the reliance on secret values represents a
whose behavior is the subject of security enforcement. vulnerability, because the values may not remain secret. In
IRM implementations must consider that a subject prBr_actice, a lucky, knowledgeable, or determined attacker
gram may attempt to circumvent the added checks—Ff&" defeat these schemes (see [48, 50, 55]).
example, by jumping around them. As a result, IRM im-
plementations typically impose restrictions on control flogecure Machine-Code Interpreters Program Shepherd-
The necessary restrictions are weaker than CFI. ing [28] employs an efficient machine-code interpreter for
Those difficulties are compounded on hardware archité®plementing a security enforcement mechanism, as does
tures that use variable-length sequences of opcode byteSteata [46]. The apparent complexity of these interpreters
encoding machine-code instructions. For example, on 88y affect their trustworthiness and complicate their adop-
Linux, the machine code for a system call is encoded usti@). Their performance overhead may be another obstacle
a two-byte opcode sequen@®, 80, in hexadecimal, while to their use (see Section 4.2).
the five opcode bytess CD 80 00 00 correspond to the On the other hand, a broad class of security policies can
arithmetic operatiorand eax, 80CDh. Therefore, on x86 be implemented by a machine-code interpreter. Program
Linux, if this particularand instruction is present in a pro-Shepherding has been used, in particular, for enforcing a
gram, then jumping to its second opcode byte is one waypeficy that includes certain runtime restrictions on control
performing a system call. Similarly, other x86 instructionipw. That policy is not CFl, as we define it, but CFI could
such as those that read or write memory, may be execlt@cenforced by having the interpreter implement the new
through jumps into the middle of opcode byte sequenceénstructions presented below in Section 3.1.
As a result, existing implementations of SFI for the x86
architecture restrict control flow so that it can only go to tl@ther Research on Intrusion Detection CFl is also re-
start of valid instructions of the subject programs. In partiated to a line of research on intrusion detection where a
ular, control flow to the middle of checking sequences, sgcurity policy for a program is derived from an inspection
directly to the instructions that those sequences protecipfishe program itself or its executions [6, 18, 19, 23, 24, 30,
prohibited. 47,57,58]. This security policy may be enforced at run-
The performance of IRMs has been problematic, in lartime using an isolated operating system mechanism, which
measure because of the need for control-flow checks, gannot be circumvented or subverted, and which disallows
ticularly on the x86 architecture [17, 33, 49]. CFl offers anvalid behaviors. The behaviors in question are often lim-
alternative, attractive implementation strategy; its guarated to sequences of system calls or library calls.
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In particular, Dean and Wagner, describe an intrusiam-typed assembly language (TAL) [35, 37]. Again, while
detection technique that relies on a program’s static CIP&C and TAL primarily aim to provide memory safety, they
to achieve “a high degree of automation, protection agaiakto impose static restrictions on control flow. Their proper-
a broad class of attacks based on corrupted code, andtiiteehave often been analyzed formally. The analyses focus
elimination of false alarms” at the system-call level [574n a model in which data memory may be modified by the
Most recent work in this area aims to make the security pslibject program, but they typically do not give guarantees
icy more precise, reducing the number of false negativégnother entity or a flaw may corrupt data memory.
both by making use of runtime information about function In the long term, CFI enforcement may have a narrower
calls and returns, and also by operating at the level ofdet of possible benefits than the use of PCC and TAL. On
brary functions as well as that of system calls. the other hand, in many circumstances, CFl enforcement

The desired precision poses efficiency and security chaky be easier to adopt. CFI enforcement also addresses the
lenges. For instance, at the time of a system call, the meed for mitigations to vulnerabilities in existing code. Fi-
formation contained in the user-level call stack can enablgly, CFl enforcement is significantly simpler (and there-
context-sensitive policies and therefore can enhance prémie potentially more trustworthy) than many alternative,
sion, but it is unreliable (as it is under program controlanguage-based techniques, such as TAL typechecking.
and maintaining a protected representation of the stack in
the kernel is expensive. In this and other examples, there is
a tension between efficiency and security. 2.2 CFland Fault-Tolerance

_ CFI_ enforcement can b_e regarded as a flne-gralrﬁgr work is also related to research on fault-tolerance of
intrusion-detection mechanism based on a'nondetermna@r-nputer systems against soft faults (single-event upsets).
tic finite automaton. When CFl is cguplet_:l with a prOteCtﬁ'\ﬁ'ost relevant are methods that attempt to discern program
shadow call stack, the level of precision increases [18, 23la¢ tion deviation from a prescribed static CFG solely

Like previous work, CFl enforcement has difficulty Witqhrough software-based methods (e.g., [39, 44, 56]). Those

data-driven impossiblg paths. CF pre(?ision i,s also aﬁec?ﬂgthods exhibit many similarities with CFI, but also signif-
by the degree of fan-in/fan-out at choice points. (The I|E'antdifferences.

erature contains several measurements of fan-in/fan-out I} e main differences between CEl and these fault-

program code, which we do not repeatin this paper.) Unl%elerance approaches stem from the differences between

previous vyork, onthe gther hand, CFl _enforce_mept restr_l tséir attacker and failure models. The fault-tolerance work

the behawo; szjvggcgicgme code instruction in SUIOJe|sthocused on one-time random bit-flipping in program state

pr(;gr?]ms (cf. | ) CFII f])' b ded and, in particular, on such bit-flipping in registers; other

b tthe same time, enforcement can be regarde ory is assumed to use error-correcting codes. CFl, on
a

ZISSI;\C/JITA%her: mtrusmrJ]r'\-detectlolg rSaghlnIery_ By lésm.ghqﬂe other hand, is concerned with a persistent, adversarial
an » that machinery could be implemented witho acker that can arbitrarily change data memory (in partic-

modifications _to the undgrlylng F’pera“’ﬁg system, or tlﬁ?ar, by exploiting program vulnerabilities), but makes cer-
cost _Of operating-system _|nteract|on_s, without a substanﬂﬂh assumptions on register contents. Most fault-tolerance
loss in the level of protection or runtime overhead. work provides probabilistic guarantees whereas CFI entails
that even a motivated, powerful adversary can never execute
Language-Based Security Virtually all high-level lan- even one instruction outside the legal CFG. On the other
guages have execution models that imply some propertiasd, CFl does not aim to provide fault tolerance.
about the expected control flows. Even unsafe high-leveMost similar to CFl is the method of Oh et al. [39]
languages are not meant to permit jumps into the middied how it restricts control flow through inlined labels and
of a machine-code instruction. Safer high-level languaggsecks. That method, like ours, encodes the CFG (or an
such as Java and C# provide stronger guarantees. Tapproximation) by embedding a set of static, immediate bit
type systems, which aim to provide memory safety, alpatterns in the program code. However, in that method,
constrain what call sequences are possible. Unfortunatelg runtime checks are evaluated at the destinations of all
such guarantees hold only at the source level. Languégenches and jumps, not at their sources. These checks are
implementations may not enforce them, and native methbdrefore ill-suited for security. For instance, they fail to
implementations may not respect them. prevent jumps into the middle of functions, in particular
Similar guarantees can be obtained at the assembly mmaps that may bypass security checks (such as access con-
binary levels through the use of proof-carrying code (PC9l checks). These details are consistent with the proba-
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bilistic failure model, but they would be unsatisfactory fquerhaps be added to common processors to form the basis
security enforcement. for a hardware CFl implementation. However, it is unre-
alistic to expect hardware changes for CFl, at least in the
. near future. In the remainder of the paper, we discuss only
3 Inlined CFI Enforcement software CFl implementations. As we demonstrate, inlined

CFI enforcement can be implemented in software on cur-

As noted n the '””Od‘%c“"”' we rely on dynamic Che_dﬁgnt processors, in particular on the x86 processor, with
for enforcing CFI, and implement the checks by machlngﬁly a modest overhead

code rewriting. We also rely on simple static inspection forCFI inst ati gifi ding t _
verifying the correctness of this rewriting, as well for es- G ns ;:men ation modi |esd—accr?r mg'bd;a a given
tablishing other CFI properties. This section describes t%g —eacisourceinstruction and each possibistina-

basics of inlined CFI enforcement and some of its detaild'©" Instruction of computed control-flow transfers. Two

Depending on the context, such as the operating Sgg_stmatmns arequivalentvhen the CFG contains edges to

tem and software environment, some security enforcem ﬁ?h from Ie>§actly the san:ﬁ ste]E ;: s%uFrccfs. Ftor_ the grese?t
mechanisms that look attractive may, in practice, be eitt?é#’pgsef" f, us ?ssume atirthe (t:r?n atlrr]ls S gte;s °
difficult to adopt or easy to circumvent. We therefore COH’YO estinalions rom a common source, then the destina-

sider not only the principles but also practical aspectst'&nS are equivalent; we re_‘conslder this ass_,umptlon n Se_c-
on 3.4. At each destination, instrumentation inserts a bit

CFI enforcement, in this section and the rest of the papet. ) o . .
pattern, or ID, that identifies an equivalence class of desti-

_ . nations. Instrumentation also inserts, before each source, a
3.1 Enforcing CFl by Instrumentation dynamic check, or ID-check, that ensures that the runtime

CFI requires that, during program execution, Whenevep%s“nat'on has the ID of the proper equivalence class.

machine-code instruction transfers control, it targets a valid=igure 1 shows a C program fragment where the function
destination, as determined by a CFG created ahead of tifs:t2 calls a gsort-like functiosort twice, first with1t
Since most instructions target a constant destination, @il then withgt as the pointer to the comparison function.
requirement can usually be discharged statically. HowevERe right side of Figure 1 shows an outline of the machine-
for computed control-flow transfers (those whose destirtg@de blocks for these four functions and all CFG edges be-
tion is determined at runtime) this requirement must be digeen them. In the figure, edges for direct calls are drawn
charged with a dynamic check. in gray; edges from source instructions are drawn in black,

Machine-code rewriting offers an apparently straightfoiith return edges also dashed. In this exampbe;t can
ward strategy for implementing dynamic checks. It is howeturn to two different places isort2. Therefore, the CFI
ever not without technical wrinkles. In particular, a rewritnstrumentation includes two IDs in the bodysefrt2, and
ten program no longer uses the same code memory, 8RdD-check when returning frogort, arbitrarily usingss
all memory addresses in the program must be adjustedagthe ID bit pattern. (Here, we do not specify to which of
cordingly. Furthermore, changes like that of the memdie two callsitessort must return; Section 5 shows how
layout may not be possible without potentially affecting tHe guarantee that each return goes to the most recent call-
semantics of some unconventional programs. Modern to®§. by using a protected shadow call stack [21, 36, 42].)
for binary instrumentation address these and other wrinkig#nilarly, becauseort can call eithe.t or gt, both com-
often trading generality and S|mp||c|ty for efﬁciency [5lpa.ri50n functions start with the D7 and thecall instruc-
52]. As a result, machine-code rewriting is practical at@n. which uses a function pointer in registerperforms
dependable. an ID-check fort7. Finally, the ID23 identifies the block

It remains to design the dynamic checks. Next we d@llowing the comparison callsite isort, so both compar-
plain one possible set of dynamic checks. Some of #&en functions return with an ID-check fas.
initial explanations are deliberately simplistic, for the pur- This example exposes patterns that are typical when CFI
poses of the exposition; variants and elaborations appeapplied to software compiled from higher-level program-
below. In particular, for these initial explanations, weing languages. CFIl instrumentation does not affect direct
rely on new machine-code instructions, with an immediinction calls: only indirect calls require an ID-check, and
ate operandD: an effect-freelabel ID instruction; a call only functions called indirectly (e.g., virtual methods) re-
instructioncall ID, DST that transfers control to the cod@uire the addition of an ID. Function returns account for
atDST only if that code starts withabel ID; and a corre- many ID-checks, and an ID must be inserted after each
sponding return instructioret ID. Such instructions couldfunction callsite, whether that function is called indirectly
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bool 1t(int x, int y) { sort2(): sort(): It():

return x < y; § § Ly label 17
¥ /,////// §
call sort call 17,R g
. . _|-ret23
bool gt(int x, int y) { label 55 v label 23«1~
return x > y; \\\~ g
} 8 ~] ¢ N gt():
~ N label 17
call sort _ ret55 \
sort2(int al[], int b[], int len) " AN §
{ label 55 [~ N
ret 23
sort( a, len, 1t ); §
sort( b, len, gt ); et
} .

Figure 1: Example program fragment and an outline of its CFG and CFI instrumentation.

Source Destination
Opcode bytes Instructions Opcode bytes Instructions
FF E1 jmp ecx ; computed jump 8B 44 24 04 mov eax, [esp+4] ; dst

can be instrumented as (a):

81 39 78 56 34 12 cmp [ecx], 12345678h ; comp ID & dst 78 56 34 12 ; data 12345678h ; ID
75 13 jne error_label ; if != fail 8B 44 24 04 mov eax, [esp+4] ; dst
8D 49 04 lea ecx, [ecx+4] ; skip ID at dst
FF E1 jmp ecx ; jump to dst

or, alternatively, instrumented as (b):
B8 77 56 34 12 mov eax, 12345677h ; load ID-1 3E OF 18 05 prefetchnta ; label
40 inc eax ; add 1 for ID 78 56 34 12 [12345678h] 5 1D
39 41 04 cmp [ecx+4], eax ; compare w/dst 8B 44 24 04 mov eax, [esp+4] ; dst
75 13 jne error_label ; if !'= fail
FF E1 jmp ecx ; jump to label

Figure 2: Example CFI instrumentations of a source x86 instruction and one of its destinations.

or not. The remaining computed control flow is typicallgondition [8]. The code sequences for ID-checks overwrite
a result of switch statements and exceptions and, in btith x86 processor flags and, in (b), a register is assumed
cases, an ID is needed at each possible destination andwailable for use; Section 4 explains why this behavior is
ID-check at the point of dispatch. reasonable.

_ In alternative (a), the ID is inserted as data before the
3.2 CFl Instrumentation Code destinationnov instruction, and the ID-check modifies the

Refining the basic scheme for CFI instrumentation, \g@mputed destination usinglaa i_nstruction to skip over
should choose specific machine-code sequences for ﬁﬁfour I,D bYteS- TheID-check directly compares the orig-
checks and IDs. The choice is far from trivial. Those coH?eaI destlnatlon.w[th the ID value. Thus, the ID bit pattern
sequences should use instructions of the architecture offngmbedded within the ID-chedlnp opcode bytes. As a

terest, and ideally they should be both correct and efficierr?ﬁu”' in (a), an attacker that can somehow affect the value

Figure 2 shows example x86 CFI instrumentation wift] theecx register might be able to cause a jump to jhe

two alternative forms of IDs and ID-checks, along WitWStrUCtIon instead of the intended destination.

their actual x86 opcode bytes. The figure uses as the ID thdlternative (b) avoids the subtlety of (a), by using-+D
32-bit hexadecimal valu¢2345678. The source (on theas the constant in the ID-check and incrementing it to com-
left) is a computed jump instructiojmp ecx, whose desti- pute the ID at runtime. Also, alternative (b) does not mod-
nation (on the right) may bemov from the stack. Here, theify the computed jump destination but, instead, inserts an
destination is already iacx so the ID-checks do not haveeffective label ID at the start of the destination—using a
to move it to a register—although, in general, ID-checkide-effect-free x86 prefetch instruction to synthesize the
must do this to avoid a time-of-check-to-time-of-use ratebel ID instruction.



Section 4 describes machine-code sequences that builthe assumptions can be somewhat problematic in the
on these two alternatives. presence of self-modifying code, runtime code genera-
tion, and the unanticipated dynamic loading of code. For-
tunately, most software is rather static—either statically
linked or with a statically-declared set of dynamic libraries.
In our design, CFl enforcement provides protection evEren so, we are working on expanding inlined CFl enforce-
against powerful adversaries that control the data memorgnt to handle runtime code generation.
of the executing program. The machine-code instructionThe implementation of IDs and ID-checks relies on a few
sequences that implement ID-checks and IDs do not redgisters, and requires that the values contained in those
on the integrity of data memory. It is however critical thaiegisters are not subject to tampering. This requirement
three assumptions hold. These three assumptions are: is compatible with kernel-based multi-threading, since one

program thread cannot affect the registers of other program
UNQ Unique IDs: After CFl instrumentation, the bit patthreads. Furthermore, this requirement is straightforwardly
terns chosen as IDs must not be present anywhereniet, as long as the program in question does not employ
the code memory except in IDs and ID-checks. Thisser-level threads (for which registers may reside in mem-
property is easily achieved, for software of reasonaluley), and if the program cannot make system calls that ar-
size, by making the space of IDs large enough (sétrarily change system state. This restriction on system
32-hit) and by choosing IDs so that they do not conalls is necessary for excluding system calls that make data
flict with the opcode bytes in the rest of the softwarememory executable—in contradiction with NXD—and that
change code memory—in contradiction with NWC and
NWC Non-Writable Code: An attacker must not be abb’bssibly in violation of UNGQ
to modify code memory at runtime. Otherwise, the at- |n general, assumptions are often vulnerabilities. When
tacker could trivially circumvent CFl, for example byassumptions are invalidated somehow, security guarantees
overwriting ID-checks. NWC is already true on mosfre diminished or void. It is therefore important to jus-
current systems, except during the loading of dynamiy assumptions (as we do for NXD, for instance) or at the
libraries and runtime code-generation. very least to make them explicit, to the extent possible. Of

course, we recognize that, in security, any set of assump-

NXD Non-Executable Data: It must not be possible to ey, jq likely to be incomplete. We focus on the assump-

ecute data as if it were code. Otherwise, an aftac ibns that we consider most relevant on the basis of analysis

could cause the execution of data that is labeled W&Hd past experience, but for example neglect the possibility

the expected ID. NXDis suppprted in hardware on ttEﬁat physical radiation might affect instruction semantics in
latest x86 processors, and Windows XP SP2 uses t(,;p

support to enforce the separation of code and data [34]6.Itrary ways.

NXD can also be implemented in software [40]. By it- o .

self (without CFI), NXD thwarts some attacks, but no:?f'4 On Destination Equivalence

those that exploit pre-existing code, such as “jump-tpreferably, control-flow enforcement should be as precise

libc” attacks (see Section 4.3). as possible. Without some care, schemes based on IDs and

ID-checks may be more permissive than necessary.

Somewhat weaker assumptions may sometimes do. In paBection 3.1 assumes that if the CFG contains edges to
ticular, even without NXD, inlined CFl enforcement mayvo destinations from a common source, then the desti-
be successful as long as the IDs are randomly chosen fromagions are equivalent. This assumption need not always
sufficiently large set; then, if attackers do not know the payeld. For instance, in a program compiled from a language
ticular IDs chosen, ID-checks will probably fail whenevegith subtyping, one may have a tyfe and a supertype
d.""t"?‘ execution is a_ttempted. This *probabilistic” defense. s !Most software security enforcement mechanisms adopt restrictions
_S'm'_lar to that prowded by StaCk,Guard [14] and Ot_her mgf this sort even for single-threaded programs, since system calls that
igation mechanisms [13,61]. Since a lucky, persistent, Ditrarily change system state invalidate many assumptions of those
knowledgeable attacker will still succeed [48], we do natechanisms, and can even turn off those mechanisms. Nevertheless, the
discuss this CFI variant further. We believe that CFEl shouRstrictions are usually left unstated because, in practice, they are diffi-

C(Eﬂt to satisfy without support from the operating system. CFl makes

be supported by either hardware or software NXD; Sel_t easier to enforce the restrictions, by allowing system calls and their

tion 5 Sh_OWS how CFI e‘_nforcement can be integrated Wiiyuments to be constrained without any operating system modification
one particular software implementation of NXD. (as discussed further in Section 5).

3.3 Assumptions




Function Call Function Return
Opcode bytes Instructions Opcode bytes Instructions

FF 53 08 call [ebx+8] ; call fptr Cc2 10 00 ret 10h ; return

are instrumented usingrefetchnta destination IDs, to become

8B 43 08 mov eax, [ebx+8] ; load fptr 8B 0C 24 mov ecx, [esp] ; load ret
3E 81 78 04 78 56 34 12 cmp [eax+4], 12345678h ; comp w/ID 83 C4 14 add esp, 14h ; pop 20
75 13 jne error_label ; if !'= fail 3E 81 79 04 cmp [ecx+4], ; compare
FF DO call eax ; call fptr DD CC BB AA AABBCCDDh 5 w/ID
3E OF 18 05 DD CC BB AA prefetchnta [AABBCCDDh] ; label ID 75 13 jne error_label ; if!=fail
FF E1 jmp ecx ; jump ret

Figure 3: The CFl instrumentation of x&al1 andret used in our implementation.

T’ that both implement a methatbString; atoString be separated from the CFG analysis on which it depends,
invocation onT' may have a single destination while a and from install-time adjustments and verifications.
toString invocation on7’ may have the destinatiom  The first phase, the construction of the CFGs used for
but also a second destinatioti. In this casen andm’ are CFI enforcement, may give rise to tasks that can range
not equivalent, but an imprecise CFl enforcement technidu@m program analysis to the specification of security poli-
may allow control to flow from &oString invocation on cies. Fortunately, a practical implementation may use stan-
Ttom!. dard control-flow analysis techniques (e.g., [2, 4,57]), for

One strategy for increasing precision is code duplicationstance at compile time. Section 4 describes how our x86
For instance, two separate copies of the funcercpy implementation applies these techniques by analyzing bi-
can target two different destination sets when they retunaries (rather than source code).
In general, code duplication can be used for eliminatingAfter CFI instrumentation (perhaps at install-time), an-
the possibility of overlapping but different destination setsther mechanism can establish the UNQ assumption.
(Specifically, we can prove that a simple construction thAthenever software is installed or modified, IDs can be up-
splits CFG nodes into multiple nodes always yields grapated to remain unique, as is done with pre-binding infor-
in which overlapping destination sets are identical.) Thigation in some operating systems [3].
approach, in the limit, amounts to complete function inlin- Finally (for example, when a program is loaded into
ing, apart from recursive calls; it has been used in severamory and assembled from components and libraries), a
intrusion detection implementations (e.g., [24]). CFI verification phase can statically validate direct jumps

Alternatively, refining the instrumentation is also a gog@ghd similar instructions, the proper insertion of IDs and ID-
option for increasing precision. For example, more thehecks, and the UNQ property. This last verification step
one ID can be inserted at certain destinations, or ID-chet¥as the significant benefit of making the trustworthiness of
can sometimes compare against only certain bits of the deined CFI enforcement be independent of the complexity
tination IDs. of the previous processing phases.

Of course, the assumption of Section 3.1 can also be
made true by adding edges to the CFG, thus losing pre&i-
sion. In practice, this alternative can often be satisfactory:

even a coarse CFlinstrumentation with only one ID valueqpis section reports on our implementation of inlined CFI

or with one ID value for the start of functions and anom%hforcement and on measurements and experiments.
ID value for valid destinations for function returns—wiill

yield significant guarantees. For instance, that instrumen&
tion will prevent jumps into the middle of functions, which
are necessary for some exploits. We have implemented inlined CFl enforcement for Win-
dows on the x86 architecture. Our implementation relies on
Vulcan [51], a mature, state-of-the art instrumentation sys-
tem for x86 binaries that requires neither recompilation nor
Inlined CFI enforcement can proceed in several distirsurce-code access. This system addresses the challenges
phases. The bulk of the CFI instrumentation, along witth machine-code rewriting in a practical fashion—as evi-

its register liveness analysis and other optimizations, aenced by its regular application to software produced by

A Practical CFI Implementation

4 The Implementation

3.5 Phases of Inlined CFI Enforcement
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Figure 4: Execution overhead of inlined CFI enforcement on SPEC2000 benchmarks.

Microsoft. Thereby, despite being only a prototype, oto a jmp to an address in a register. If an ID-check fails,
implementation of inlined CFI enforcement is both practur implementation immediately aborts execution by using
cal and realistic. a Windows mechanism for reporting security violations.

Our implementation uses Vulcan for building a CFG of Our CFl instrumentation is crafted to allow low enforce-
the program being instrumented. This CFG constructigrent overheads for most programs. Because the IDs and
correctly handles x86 instructions that perform computde-checks have the same locality properties as executing
control transfers—including function returns, calls throudi®de, they are not penalized by high memory latency. On
function pointers, and instructions emitted for switch statée x86, the ID-check instrumentation can make use of the
ments and other dynamic dispatch (like C++ vtables). Giiandard calling conventions for further performance gain:
CFG is conservative in that each computed 1 instruc- in almost all cases, theax andecx registers can be used
tion may go to any function whose address is taken; @gectly at function calls and returns, respectively, and the
discover those functions with a flow-insensitive analysis ¥36 flags do not have to be saved. During our experiments,
relocation entries in the binary. Our implementation is sime discovered only about a dozen functions—mostly hand-
plified by certain Windows particulars: there are no signa¥¥jitten code in standard libraries—where state (such as the
like those of Unix, and Windows binaries provide a “Saf&86 flags) needs to be preserved.

SEH?” static list of all possible runtime exception handlers. All CFI optimization, like the above, must be done care-
Other CFG intricacies, such aetjmp andlongjmp, are fully, since it can lead to a change in program semantics
handled using techniques from the programming-languageso invalid CFl instrumentation. For instance, if two ID-
and the intrusion-detection literature [4, 19, 24, 57]. checks like those of Figure 3 use the same ID, but a different

Figure 3 shows how our CFI implementation rewrites tfi@gdister, then CFI might be subverted—so this CFl instru-
x86 machine code for an indirect function call and a cdRentation will not pass verification. Fortunately, the use of
responding function return. The destination of el a final verification phase can ensure that the CFl guarantees
instruction is stored in memory at addregs:+8; the argu- vinI hold during execution despite any errors in optimiza-
ment 10h makes theret instruction also pop 16 bytes of!Ons-
parameters off the stack. Next we explain some of the de-

_tails of the rewr?tten c_ode. On x86, CFI instrumentation cay  Measurements

implement IDs in various ways (e.g., by successive opcodes

that add and subtract the same constant). Our prototy¥e, measured the overhead of our inlined CFI enforce-
like alternative (b) of Section 3.2, uses prefetch instructiom&nt on some of the common SPEC computation bench-
for IDs. Our ID-checks, however, take after the other altenarks [53]. We performed all the experiments in this paper
native of Section 3.2: amp instruction directly compareson Windows XP SP2 in “Safe Mode,” where most daemons
against the destination ID bit pattern—and, hence, an amd kernel modules are disabled. Our hardware was a Pen-
finite loop of the ID-check opcode byt&g. . .DO is pos- tium 4 x86 processor at 1.8GHz with 512MB of RAM. The
sible. (We do not regard such loops as a serious failtiaeget programs were compiled with Microsoft Visual C++
of CFl, since an attacker that controls all of memory proB-1 using full optimizations. For SPEC, the inputs were the
ably has many ways of causing infinite loops.) To avo@mplete reference datasets and the output was validated as
a race condition, source instructions where the destinatiba correct result. We report the average of three runs; mea-
address resides in data memory (suckr&s are changed surement variance was negligible, with standard deviation

9



of less than one percent. improper launch of themd . exe shell or some other dan-
The CFG construction and CFI instrumentation of eaglerous executable (see also [10]). On the other hand, CFlI
binary took about 10 seconds, with the size of the binampuld have prevented all the other exploits that we stud-
increasing by an average 8%. Figure 4 gives the normieH because, in one way or another, they all endeavored to
ized overhead of CFI enforcement, shown as increasal@viate from the expected control flow. Many exploits per-
the running time of each CFl-instrumented benchmark réfmed a “jump-toiibc” control transfer from a program
ative to the running time of the original benchmark binariggint where this jump was not expected. Often this invalid
The measured overhead ranged from zero to 45%, andabetrol transfer was attempted through heap overflows or
benchmarks took an average of 16% longer to execute. some form of pointer subterfuge (of the kind recently de-
As shown by Figure 4, our prototype inlined CFI erscribed by Pincus and Baker [41]).
forcement hardly affects the performance of some pro-Pointer subterfuge relies on modifications to data mem-
grams, but it can cause a substantial slowdown of otiegy, and can result in possibly arbitrary further modifica-
programs. Overall, the measured performance overh#@ds to data memory. Hence, thwarting pointer subterfuge
seems tolerable, even though we have not yet explogéds for techniques that—like ours—afford protection even
most of the optimizations possible in x86 CFI instrument&hen attackers are in full control of data memory.
tion. Because of CFl verification, such further optimization As a concrete example, let us consider the published at-
should reduce overhead without making CFI enforceméagk on the GDI+ JPEG flaw in Windows [20]. This attack
less trustworthy. starts by causing a memory corruption, overwriting a global
Moreover, the overhead is competitive with—or evéf@riable that holds a C++ object pointer. When this pointer
better than—the cost of most comparable techniques tigd@ter used for calling a virtual destructor, the attacker has
aim to mitigate security vulnerabilities (e.g., [13, 28, 45]fhe possibility of executing code of their choice. A CFI ID-
For instance, the overhead of Program Shepherding is m@tck at this callsite can prevent this exploit, for instance
than 100% for the benchmark progratpatty on Win- Dy restricting valid destinations to the C++ virtual destruc-
dows; the corresponding CFI enforcement overhead is 489 methods of the GDI+ library.
and this is our highest measured overhead. Similarly, théAs another concrete example that illustrates the benefits
overhead of Program Shepherding is more than 660% @iCFl, we discuss the following C function, which is in-
gcc on Windows, and can be brought down to 35% only i§nded to return the median value of an array of integers:
exposing the security mechanism itself to attack; the corre- ) ) ] )
sponding overhead of CFl enforcement is under 10%, ~ L0t median( intx data, int len, void* cmp )
Note that the SPEC benchmarks focus on CPU-intensive  /; pust have 0 < len <= MAX_LEN
programs with integer arithmetic. CFI will cause relatively int tmp[MAX_LEN];
less overhead for I/O-driven server workloads. For exam- memcpy( tmp, data, len*sizeof(int) );
ple, one might expect to see an even smaller performance gsort( tmp, len, sizeof(int), cmp );

impact on FTP than on SPEC (as in [62]). } return tmp[len/2];

4.3 Security-Related Experiments This code is vulnerable—and can be exploited by an at-
tacker that controls the inputs—even on systems that use
It is difficult to quantify the security benefits of any givedeployed mitigation techniques such as stack canaries and
mitigation technology: the effects of unexploited vuhardware NXD support. We have constructed actual ex-
nerabilities cannot be predicted, and real-world attackssteits for this vulnerability; they work even on Windows
which tend to depend on particular system details—can)e SP2 with x86 hardware NXD support. One exploit is
thwarted, without any security benefits, by trivial changeased on a traditional stack-based buffer overflow; others
to those details. work via C++ vtables and the heap. The exploits overwrite
Even so, in order to assess the effectiveness of CFl, thegsort comparison function pointer, pointing it to a se-
examined by hand some well-known security exploits (sughence of four machine-code opcode bytes (found in the
as those of the Blaster and Slammer worms) as well as seiddle of an existing function) which reposition the stack
eral recently reported vulnerabilities (such as the Windowsinteresp in a particular way. Subsequently, whemp
ASN.1 and GDI+ JPEG flaws). CFI would not have prés called, the exploit proceeds through the unwinding of the
vented Nimda and some similar exploits that rely on the istack; as each frame is popped, the exploit executes a par-
correct parsing of input strings, such as URLSs, to cause tioeillar piece of existing code. Eventually, the attacker has
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int compute_sum( int a[], int len )

{ mov ecx, Oh ; int 1 =0
int sum = 0; mov esi, [esp+8] ; al] base ptr
for(int i = 0; i < len; ++i) { and esi, 20FFFFFFh ; SFI masking

sum += al[il; LOOP: add eax, [esitecx*4] ; sum += al[i]
¥ inc ecx 5 ++i
return sum; cmp ecx, edx ; 1 < len
} j1  LOOP

Figure 5: Leveraging CFI for optimizations: hoisting an SFI check out of a loop.

full control over the system. 5.1 CFl as a Foundation for IRMs
With CFlI, on the other hand, the vulnerability in th
median function cannot be exploited in this manner. C

forbids invalid control transfers into the middle of functiong . )
ional, necessary security-relevant state [16]. IRMs require

(as well as returns to the start of functions), and it therefqre . ) . .
revents the necessary first step of the exploits (and woy, t the subject program can neither circumvent the inserted
P y P b Idity checks nor subvert the added security state. By

. o V,
also prevent subsequent steps). This protection is not g%nstraining the CFG enforced by CFl, the first of these re-

pendent on hov‘.’ closely the CFl runtime guarantees Cor(%f ements is easily satisfied. Further, SMAC (discussed
spond to a precise CFG of the program; even a coarse Cb #ow) supports isolated data memory regions in which

e
has the desired effect ©
) ' . i the IRM security state can be safely kept. Thus, CFI and

For a final set of experiments, we ported to Windo

ite of 1 for d i buff f| VYSmAC greatly facilitate the implementation of IRMs.
a suite of 18 tests for dynamic buffer-overflow prevention, e lar, CFI can contribute to the IRM enforce-

developed by Wilander and Kamkar [60]. (Wilander ar}ﬂent of security policies that restrict a program’s use of

Kamkar were unable to proylde us with the source code_{% underlying operating system (for instance, preventing
two of the 20 tests from their study.) The tests in the Oriras with some filenames from being written) [43]. Such
inal suite concern whether attackers could directly execﬂ'&ﬂicies are often necessary; many of their existing imple-

shellcode of their choosing. We extended the tests to Ckntations modify operating systems, something that CF|

sider also “jump-takibe” and pointer subterfuge attawkse_nables us to avoid. With CFl, it is easy to enumerate those

We computed CFGs for these tests, and applied OurCFIﬁB'mts in a program where system calls can be made. At

strumentation. With CFI enforcement, none of the exploggch such point, an IRM validity check can be inserted, and

in this test suite were successful, because they attem@gli can ensure that the check cannot be circumvented
to deviate from the corresponding CFGs. This result is '

encouraging, especially since other mitigation techniq
have failed these tests [60]. U""ea Faster SF

Ms enforce security policies by inserting into subject
rograms the code for validity checks and also any addi-

Software Fault Isolation (SFI) is one particular type of IRM

designed to emulate traditional memory protection. In SFl,
5 Building on CFlI code is inserted at each machine-code instruction that ac-

cesses memory to ensure that the target memory address
CFIl ensures that runtime execution proceeds along a gilies within a certain range [17, 33, 49, 59].
CFG—qguaranteeing, for instance, that the execution of aMuch as in Section 5.1, CFI makes SFI instrumentation
typical function always starts at the beginning and proceetfts-circumventable. CFI can also reduce SFI overhead.
from beginning to end. Thereby, CFI can increase the retbr instance, the guarantees about control flow remove the
ability of any CFG-based technique (for example, strengtfeed to check memory addresses in local variables repeat-
ening previous techniques against buffer overflows and &tly. Figure 5 demonstrates one such optimization. The
intrusion detection [31, 57]). figure shows a C function that sums the contents of an ar-

This section describes other applications of CFl, agay, and the first two basic blocks of the x86 machine code

foundation for Inlined Reference Monitors (IRMs), for SRhat a compiler might emit for this function. (The start of
in particular, and for Software Memory Access Contrdihe first basic block is elided.) The machine code includes
(SMAC), which we introduce here. It also shows how tnand instruction that masks off the top bits from the base
tighten CFI enforcement by relying on either SMAC aaddress of the array, constraining the array to reside at an
standard x86 hardware support. address whose top eight bits are eitbel or 20h. As long
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call eax ; call func ptr ret ; return

with CFI, and SMAC discharging the NXD requirement, can become:

and eax, 40FFFFFFh ; mask func ptr mov ecx, [esp] ; load return dst
cmp [eax+4], ID ; compare dst w/ID and ecx, 40FFFFFFh ; mask return dst
jne error_label ; if 1= fail cmp [ecx+4], ID ; comp dst w/ID
call eax ; call func ptr jne error_label ; if 1= fail
prefetchnta ID ; label ID add esp, 4h ; pop 4

jmp ecx ; jump return dst

Figure 6: Instrumentation of x8€a11 andret, with CFl and SMAC.

as the low memory (whose addresses start with) is in- 5.3 SMAC: Generalized SFI
accessible, this use of amd instruction can establish sev-

eral disjoint, isolated memory regions as demonstrated in

PittSFleld, a recent, efficient x86 SFI implementation [33pMAC is an extension of SFI that allows different in-

The SFl literature is full of other optimizations that Simgerted checks at different instructions in the program being

plify the inserted checks. For example, checks can Oﬂc%nstralned. Therefore, SMAC can enforce policies other

be eliminated when memory is accessed through a rt an those of traditional memory protection. In particular,

: . JAC can create isolated data memory regions that are ac-
ister plus a small constant offset, as long as maccess% e yreg

squard pages” are placed before and after permitted mecne1_SS|bIe from only specific pieces of program code, for in-

ory ranges. This optimization is especially useful for ag.ance. from a library function or even individual instruc-

cesses to local, stack variables, such as reading the valt}'egra{% Thus, SMAC can be used to implement IRM security

esp+8 in Figure 5. However, the weak control—flowguararﬁ—tate that cannot be subverted. For instance, the names of

tees of past SFI implementations make it difficult to reasolrglaS abput to be °pe‘f‘e.d can f',r,St be c_:opled to memory only
cessible from the “FileOpen” function, and then checked

about program behavior and, partly as a result, past o i ; " i
mizations have sometimes led to vulnerabilities [17, 33]. gainsta security poficy.

CFI makes optimizations more robust and enables manyVhereas CFI can help with SMAC optimizations, much
new ones. For the code in Figure 5, CFl allows #w as it does for SFI optimizations, SMAC can help in elim-
instruction to be hoisted out of the loop; thus, at runtimejrating CFl assumptions. SMAC can remove the need for
single masking operation suffices for checking all memadWC, by disallowing writes to certain memory addresses,
accesses due to the array. Past implementations of SFhara for NXD, by preventing control flow outside those ad-
guire a masking operation to accompany each executiordafsses. (This synergy between CFl and SMAC is not a
the add instruction, because a computed jump might resaltcular-reasoning fallacy, as we demonstrate in the formal
in that instruction executing with arbitrary values in regisreatment of CFl with SMAC [1].)

tersesi andecx. CFIl precludes such computed jumps, and _. 6 sh SMAC inst tation that
with CFl it is easy see that loop execution does not chan 'gure © shows instrumentation that can guaran-

esi and incrementscx from a base of zero. tge th.at only code is executgd. As In Flggre Sam n-
Th timizati It triki head red struction masks off the top bits of the destination addresses
ese optimization result in a striking overhead reduy computed x86 function calls and returns. Thus, code

tion. Thi SFI8I6|t.er\a;_tur(,e 'rl\]/(lzggleTS m8e6assu'£\esr:1entz o;_trg mory is restricted to addresses whose top eight bits are
systems for x86: Vino's Mi P X » an it 40h (provided that addresses that start vaithh are invalid).
Fleld [17,33,49]. For comparison, we applied CFI a

. S ) ensure NWC and NXD for simple regions of code, stack,
SFI, with the optimizations of Figure 5, to two benchmatr,

" : : d data, the SMAC checks can be as straightforward as
programshotllgt and the C reference |mpler_nentat|pn %his singleand instruction.
MD5. Thehotlist benchmark searches a linked list o

integers for a particular value [49]. Fabtlist, MiSFIT Alternatively, the SMAC checks might embody elaborate
and SASI produce 140% and 260% overheads, respectivadlicies, and allow arbitrary layouts of data and code mem-
when both memory reads and writes are restricted. Our amy regions, although the code for such checks is likely to
responding measurement shows only 22% overhead. B®emore complex and less efficient than that of Figure 6.
MD5, the reported performance overheads for PittSFlgtdthis paper, since it suffices for our immediate purposes,
and MISFIT range from 23% to 50% [33,49]. Our correwe follow the SFI literature and focus on coarser-grained
sponding measurement shows only 4.7% overhead.  memory protection.
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call eax ; call func ptr ret ; return

with a CFl-based implementation of a protected shadow call stack using hardware segments, can become:

call eax

LRET: ...

add gs:[0h], 4h ; inc stack by 4 mov ecx, gs:[Oh] ; get top offset
mov ecx, gs:[Oh] ; get top offset mov ecx, gs:[ecx] ; pop return dst
mov gs:[ecx], LRET ; push ret dst sub gs:[Oh], 4h ; dec stack by 4
cmp [eax+4], ID ; comp fptr w/ID add esp, 4h ; skip extra ret
jne error_label ; if != fail jmp ecx ; jump return dst

call func ptr

Figure 7: Instrumentation of x86a11 andret, with CFl and a protected shadow call stack.

5.4 A Protected Shadow Call Stack other hand, it is extremely difficult to trust the use of seg-

o ) ] ments in an x86 machine-code sequence of non-trivial size.
Because CFI concerns a finite, static CFG, it cannot ensgie instance, the opcodes for loading an improper segment

that a function call returns to the callsite most recently usgg{a.tor might be found within basic blocks in system li-
for invoking the function. Complementing CFl with they .,y code, or even within the opcodes of a long, multi-byte

runtime call stack (see [11,21-23, 36,42]) can guaranif&:ction: without CFI, an attacker might be able to direct
this property and increase the precision of CFl enforcemelation to those places.

However, if CFlis to rely on runtime information such as a Figure 7 shows how we use segments in our instrumen-

call stack, the information should not be maintained in Ulsion The segment registgs always points to the mem-
protected memory, as the ordinary call stack usually dogg; segment that holds the shadow call stack and which has
since the attacker may corrupt or control unprotected M&ie, created to be isolated and disjoint from other accessi-
ory. Therefore, a protected shadow call stack is necessaty, memory segments. On Windovgs is unused in appli-
One possible strategy for implementing a protectediion code; therefore, without limitation, CFI verification
shadow call stack employs CFI and SMAC. Specificallyan statically preclude its use outside this instrumentation.
the shadow call stack may be maintained in a memQ¥ shown in the figure, the instrumentation code maintains
region whose addresses start with a specific prefix (e(ﬁw’memory locatiorgs : [0h]) an offset into this segment
10n), and protected by SMAC checks such as those ikt aiways points to the top of the stack. The use of the
Sectlon_ 5.3. Statlc.verlflcatlon can then ensure that _O'ﬂbbtected shadow call stack implies that return goes to the
SMAC instrumentation code at call and return instructiopgrect destination, so no ID-checks are required on returns
can modify this memory region, and only by correctly pusfy this instrumentation code.
ing and popping the correct values. The isolated memory segment for the shadow call stack
In this section we focus on an alternative implementggn pe created by user-mode application code, as long as
tion strategy. The resulting implementation is even simpigjs activity happens before all other code executes, and
and more efficient than one that employs SMAC. It levegn|y this code loads new selectors into segment registers.
ages the CFl guarantees and standard x86 hardware gigpeach thread of execution, this initial code can truncate
port. Specifically, we maintain the shadow call stack in ghe existing code and data segments and specify that the
isolated x86 segmehtWith CFl, static verification can €N-new, isolated segment lies within the freed-up address re-
sure that a particular segment register, or segment selegjgfy. CFI can guarantee that the machine code for this setup
is used properly by the instrumentation code for call aggtivity will remain inaccessible once it has executed.
return instructions, and that only this instrumentation COdeAIternativer, the isolated memory segment might be cre-
accesses the corresponding segment. Without CFI, onthgy by the operating system. Support from the operating

5 , . o system could provide other benefits, such as reduced re-
The x86 architecture allows multipegmentso exist simultane- . . .
ously within an application. A segment is a specified region of memoﬁ?urce consumption by fast detection of overflows in the
named using an ordinaelector A segment is adopted by loading itsshadow call stack (for example, using “guard pages”) and
ordinal into asegment registerthere are six such registers, of whicldynamic increases in the segment size. We do not asume
some are rarely, if ever, used in modern application code. All memQeps support from the operating system, as it is not standard
accesses are performed relative to a segment; the instructions speciiflg t We d d onl t Wind feat
which segment register is to be used, either implicitly or explicitly. O% resent. : € depend only on curren Indows teatures.
most popular operating systems, user-level code can specify memory rélVe have implemented a protected shadow call stack for
gions for its own local segments, which are then context-switched witfindows on the x86 architecture, relying on segments and
the application. CFl, as outlined above. Figure 8 shows detailed perfor-
mance measurements for the SPEC benchmarks. We ob-
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Figure 8: Enforcement overhead for CFl with a protected shadow call stack on SPEC2000 benchmarks.

served only a modest performance overhead for our Cfdjected several techniques that were based on unclear as-
protected shadow call stack instrumentation: on averagenptions or that would have provided hard-to-define pro-
21%, with 5% forgzip and 11% forgcc. The overhead tections.
includes that of CFI enforcement without the unnecessaryMore specifically, this study includes a semantics for
ID-checks on returns. These measurements are consigtergrams, definitions for program instrumentation, and re-
with the overhead reported in the literature foprotected sults about the behavior of instrumented programs. The se-
shadow call stacks (whose integrity could be subvertedntics allows for the possibility that an attacker controls
attackers) [42]. In contrast, the overhead reported in the ista memory. The program instrumentation has two vari-
erature fomprotectedshadow call stacks ranges from 729%nts, with and without SMAC; the latter addresses a ma-
(for gzip) to 1900% (forgec) [11, 22]. While the dramatic chine model with weaker assumptions. In what follows, we
improvement that we obtain is partly due to the use of ségeus on the variant without SMAC, except where other-
ments, this use of segments is possible only because of @kde noted. Our main theorems establish that CFI holds for
Once we have a protected shadow call stack, further irestrumented programs.
strictions on control flow become possible. For example,The machine model and the programs that we employ are
the control-flow policy could require that every call frontypical of research in programming-language theory. They
a certain functiorg to another functiorh be immediately enable us to consider CFI but exclude virtual memory, dy-
preceded by a call from a third functiahto g. (Analo- namic linking, threading, and other sophisticated features
gous restrictions often appear in the literature on intrusifiund in actual systems. In the machine model, an execu-
detection.) Even further restrictions become possible if Wien state consists of a code memavy., a data memory
keep a protected computation history that records all cddy, an assignment of values to regist&sand a program
trol transfers. For example, the control-flow policy coulcbunterpc. Here, M, and My map addresses to wordg,
then require that a certain functidris called at most as of-maps register numbers to words, gndis a word. Essen-
ten as another function Such restrictions may sometimesally, our language is a minor variant of that of Hamid et
be desirable; for instance, they might prevent some “ca@i-[26]. We add only an instruction in which an immediate
fused deputy” attacks [27]. On the other hand, we believaue can be embedded, as a label, and which behaves like
that even the simplest kind of CFI enforcement is quite efnop. It is directly analogous to theabel ID instruction
fective at thwarting external attacks that aim to control sofif Section 3.1.
ware behavior. We give a formal operational semantics for the instruc-
tions of our language. For each of the instructions, the se-
mantics says how the instruction affects memory, the ma-
chine registers, and the program counter. For example, for
e instructioradd ry, 75, ¢, the semantics says:

6 Formal Study (Summary)

In this section we summarize our formal study of CFI. K]
technical report contains further details [1]. We view this If M.(pc) contains the encoding afid r4, 7, ¢,
study as central to our work, as a major difference with lit- and the current state has code membfy, data
erature on previous mitigation tools, and as an important memoryM,, program counter valuge, and reg-
similarity with research on type-safe languages. We have ister valuesk, and if pc + 1 is within the domain
found it helpful for clarifying hypotheses and guarantees. of M., then in the next state the code memory
We have also found it helpful as a guide: in our research, we and data memory are stiM,. and M, respec-
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tively, pc is incremented, an® is updated so that I(M.) when code memon/, is well-instrumented ac-
it mapsry to R(rs) + R(r¢). cording to our criteria. These criteria include, for example,
_ , _ _ _ that every computed jump instruction is preceded by a par-
We consider SMAC with a variant of this semantics thgt,1ar sequence of instructions, which depends on a given
includes fewer built-in checks. In the example of therg \when we consider SMAC, we also require that every
add 14, s, ¢ Instruction, the variant does not include thg,e oy operation is preceded by a particular sequence of
precondition thape + 1 is within the domain of\.. In jnq4ctions. Those sequences are analogous to the ones
other words, the machine model allows the possibility thala i our actual implementation and described in detail
pe points outside code memory, and the instrumentatigi,is haper. There are however differences in specifics,
aims to ensure that this possibility is harmless. largely because of the differences between the simple ma-
We depart significantly from the work of Hamid et al. anghine model of our formal study and the x86 architecture.

other previous work by including a representation of the atyyun these definitions, we obtain formal results about
tacker in our model. Despite its simplicity, we regard thig, . jnstrumentation methods. Those results express the in-
departure as one of our main formal contributions. Singgyi of control flow despite memory modifications by an
the attacker that we have in mind is quite powerful, 0Rg1er Our main theorems say that every execution step
might imagine that it could be difficult to capture all its Cas¢ 5, instrumented program is either an attack step in which

pabilities. Fortunately, we can adopt an economical r§fa oroqram counter does not change, or a normal step to a
resentation of the attacker. This representation consistg o \vith a valid successor program counter. That is:
introducing one more rule into our operational semantics.

The new rule expresses attacker steps, and says that at anyLet Sy be a state with code memony,. such that

time the attacker may modfiy data memory and most regis- I(M.) andpc = 0, and letSy, ..., S, be states

ters. It excludes the small number of distinguished registers such thatS, — S; — ... — S,. Then, for all

on which the instrumentation relies; it also excludes code i € 0..(n — 1), eitherS; —, S;+1 or the pc at

memory, consistenly with our assumption NWC. Si+1 is one of the allowed successors for the
As usual in programming-language theory, the opera- ats; according to the given CFG.

tional semantics describes state transitions by precise ru_l_ S. despite attack st h ter al ‘ol
For add ry, rs, ¢, fOr example, we have that: us, despite attack steps, the program counter always 10l-

lows the CFG. The proof of these theorems consist in fairly

(M.| My, R, pc) conventional but long inductions on executions.
— We have yet to pursue a similar formal study for the x86
(M. Mg, R{rg — R(r5) + R(r)}, pc + 1) architecture. Such a study may well be viable (as suggested

by recent work [33]), but it may produce diminishing re-
when M. (pc) holdsadd rq4, 15,7 andpc + 1 is in the do- turns, and it would be arduous, not least because of the cur-
main of M.. The relation—,, is a binary relation on stategent absence of a complete formal specification for the x86
that expresses normal execution steps. For the attackeraveitecture.
have a rule that enables the following transitions, fonal|

My, M, R, andpc: .
d» Hd P 7 Conclusion

(M0|Md7R7pC) . .
N The use of high-level programming languages has, for a
(M| My, R, pc) long time, implied that only certain control flow should
be expected during software execution. Even so, at the
The relation—, is a binary relation on states, aifj;’ isthe machine-code level, relatively little effort has been spent
arbitrary new value of the data memory. We do not show the guaranteeing that control actually flows as expected.
modifications to registers, for simplicity—our actual rule i8he absence of runtime control-flow guarantees has a per-
more general in this respect. The next-state relatiois vasive impact on all software analysis, processing, and
the union of—,, and—,. optimization—and it also enables many of today’s frequent
In our formal study, instrumentation is treated as a sexploits.
ries of precise checks on programs. The checks capture theFl instrumentation aims to change this situation by em-
conditions that well-instrumented code should satisfy, abedding within software executables both a control-flow
do not address how the instrumentation happens. Only plodicy to be enforced at runtime and the mechanism for
former concern is directly relevant to security. We writtat enforcement. Inlined CFI enforcement is practical to
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implement on modern processors, is compatible with m@kt] T. Chiueh and F. Hsu. Rad: A compile-time solution
existing software, and has little performance overhead. CFl
can also enable substantial performance improvements for ings of the The 21st International Conference on Dis-
other security mechanisms. Finally, CFl is simple, verifi-
able, and amenable to formal analysis, yielding strong guar-
antees even in the presence of a powerful adversary.

[12]
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