
Secure Programming Lecture 15:
Information Leakage

David Aspinall

11th March 2016

Recap

We have looked at:

É examples of vulnerabilities and exploits
É particular programming failure patterns
É security engineering
É tools: static analysis code review

In the last two lectures we examine some:

É language-based security principles

for (ensuring) secure programs.

Security Properties

Remember the “CIA” triple of traditional properties for
secure systems:

É Confidentiality
É Integrity
É Availability

(these are not the only security-relevant properties)

Confidentiality can be particularly tricky compared to I
and A, to establish. (Q. Why?)

Confidentiality

Information is confidential if it cannot be learned by
unauthorized principals.

Information leakage through the web

Script 

Browser

DOM 
tree

Internet 

Origin-based restrictions

É Browser: Single Origin Policy (SOP): web page
elements must come from same domain, or else
block/warn user

É Restrictive in practice
É Doesn’t prevent intentional/accidental release

Relaxing origin-based restrictions

É Web page loads script content from many places
É Information from user/browser may leak to

other places
É Reason for SOP



Solution: separate confidential from
non-confidential data

End-to-end security

General need:

É end-to-end confidentiality, integrity

which requires

É protection at all levels

To provide protection of application level concepts.

Problems of standard mechanisms (reminder)
Security in higher level applications requires lower-level
mechanisms, but these aren’t sufficient.

OS-level access control

É isolates users, files, processes
É but: what if one part of a process should be

protected from parts of the same process?

Firewalls:

É stop some bad things entering programs
É but: massive leakage via port 80; web app firewalls

are a fragile, losing game (Q. Why?)

Encryption

É secures a communication channel
É but not the endpoints, where data enters or leaves

Problems of standard mechanisms, continued

Antivirus scanning:

É Good with known malware, recognize by signature
É Little use on zero-day exploits

Code signing

É Digital signatures identify code producer/packager
É but don’t actually guarantee code is secure

Sandboxing and OS-based monitoring

É Can block low-level accesses
É But not information transfer within applications
É Pure sandboxes too strict (witness rise of “sharing”

in mobile applications)

Language-based security

Idea: prevent application-level attacks inside the
application.

Benefits:

É Semantics-based security specification: rigorous
and precise definition of what is required, based on
definitions and data used inside program.

É Static enforcement sometimes possible if we
admit a white box technique, we can examine the
code, use programmer annotations and/or special
type systems, drive run-time monitoring if needed.

Dynamic taint tracking

Idea: add security labels to data inputs (sources) and
data outputs (sinks). Propagate labels during
computation (cf dynamic typing).

Labels are:

Tainted

É Data from taint sources (e.g., user input)
É Data arising from or influenced by tainted data

Untainted

É Data that is safe to output or use in sensitive ways



Stopping tainted data being stored Preventing jumps to tainted addresses

See Schwartz, Avgerinos, Brumley, All You Ever Wanted to Know
About Dynamic Taint Analysis and Forward Symbolic Execution (but

might have been afraid to ask), IEEE Security and Privacy, 2010.
This paper explains tainting with a simple operational semantics.

Taintdroid: notifying dynamic leaks on Android

Taintdroid uses a modification of the Android framework to track data
flows at runtime. See the demo video.

Drawbacks of the dynamic method

Preventing code injection exploits using dynamic
taint tracking is like letting a thief in your house
and checking his bag for stolen goods at the
very moment he tries to leave. It might work,
but only if you never lose track of the gangster
and if you really know your house. However, I
would prefer a solution that does not let thieves
in my house in the first place.

Analogy by Martin Johns used to explain dynamic taint tracking, 2007

Another drawback: implicit flows

É Simple dynamic tracking only captures direct flows
É To spot implicit flows, need to monitor every path
É Not only the ones actually taken by the program!
É Quickly impractical without severely pruning

É special techniques like forward symbolic execution

Type-checking information flow

Idea: define a type system which tracks security levels
of variables in the program, and adding levels to sources
and sinks. Security levels may be:

High

É Sensitive information, e.g., personal details
É Any other data that

É is computed directly from high data
É occurs in a high context (high test in if)

Low

É Public information, e.g, obtained from user input

More generally, security labels may be taken from a multi-level
security lattice as described in 3rd year Computer Security.



Static guarantee for security type system

The type system is designed to detect insecure
information flows.

If a program can be type-checked, it will be secure on
any execution, without the need to monitor dynamically.

Compare this with the idea of ordinary typing for data, to distinguish
strings and numbers, etc. That provides the guarantee of memory

safety: a well-typed program does not need to check types
dynamically.

Theorem: Typability implies no insecure flows

If an output expression has type low, then it cannot be
affected by any input of type high. Hence there can be
no insecure information flows in the program.

Absence of flows Semantic property: non-interference

Goguen and Meseguer expressed the property of
non-interference for sequential programs.

For any two executions of the program which
differ only in high inputs, the result of low
outputs does not change.

More generally, we may use a notion of behavioural equivalence to
relate values computed by the program. This allows for precise

values to change, e.g., generating randomly different crypto keys on
each run, and to express the restricted capability of an attacker to

decrypt values.

Formalisation of non-interference

Non-interference can be formalised using programming
language semantics, as a definition like this:

Semantic indistinguishability

Type-checking information flow: examples Type-checking: basic rules



Type-checking: compound rules Type-checking: example Limits of simple type checking

Jif: Information Flow Checking for Java
Jif extends Java by adding labels that express restrictions
on how information may be used.

We can give a security policy to a variable x with:

int {Alice->Bob} x;

which says that information in x is controlled by Alice,
and Alice permits the information to be seen by Bob.

The Jif compiler analyses information flows and checks
whether confidentiality and integrity are ensured.

int {Alice->Bob, Chuck} y;
x = y; // OK: policy on x is stronger
y = x; // BAD: policy on y is not as strong as x

Jif translates into plain Java, doing static type checking,
but also allows dynamic enforcement for runtime labels.

FlowDroid: static taint tracking on Android

FlowDroid does static taint tracking for Android
applications.

It includes sophisticated data flow tracking that
understands pointer aliasing, as well as class and field
references.

See FlowDroid web page for more information.

References and credits

Most of this lecture has been adapted from

É Information Flow lectures given by Andrei Sabelfeld
at Chalmers University of Technology, Sweden.

Recommended reading:

É Sabelfeld and Myers, Language-Based
Information-Flow Security, IEEE Journal on Selected
Areas In Communications, 21(1), 2003.

É Amusing academic publicity video made by
Sabelfeld’s group at Chalmers.


