Secure Programming Lecture 14:

Static Analysis Il

David Aspinall

8th March 2016

Outline

Overview

Recap

We're looking at
» principles and tools

for ensuring software security.

This lecture looks at:

» further example uses of static analysis
» some hints about how static analysis works

Advanced static analysis jobs

Static analysis is used for a range of tasks that are
useful for ensuring secure code.

Basic tasks include type checking and style
checking, described last lecture.

More advanced tasks are:

Program understanding: inferring meaning
Property checking: ensuring no bad behaviour
Program verification: ensuring correct behaviour
Bug finding: detecting likely errors

vyVvYyy

Outline

Program understanding

Program understanding tools

Help developers understand and manipulate large
codebases.

» Navigation swiftly inside the code

» finding definition of a constant
» finding call graph for a method

» Support refactoring operations

» re-naming functions or constants
» move functions from one module to another
» needs internal model of whole code base

» Inferring design from code
» Reverse engineer or check informal design

Outlook: may become increasingly used for security
review, with dedicated tools. Close relation to tools used
for malware analysis (reverse engineering).

Commercial example: StructurelOl

Structural aver-complexity ik B S tvimE & SE34 FHERT
g 4+
[icefaces-1.8_1 '
2 com
¥l (& icesoft
2
i
*
(2 faces
. Bﬂvmﬁ_

item [size
(% icefaces-1_8_l.com.icesoft 71876

| (@ icefaces-1_8_l.com.icesof... 61,336 ﬁ'}.
(& icefaces-1_8_1.com.icesof... 15,147 (2 component 1
(2% icefaces-1_8_l.com.icesof... 12,970
(# icefaces-1_8_l.com.icesof... 12,803
(2% icefaces-1_8_1.com.icesof... 10,683
(@ icefaces-1_8_l.com.icesof... 1,663

B

b

B
I
H

Research example: Fujaba and Reclipse

cd weatherMode!

WeatherStation

& subject Weathersensor = null

= new ArrayList()

& setSubject (sWeatherSensor)

@ update (subject WeatherSensor)|

TemperatureSensor
& temperature: Integer = 0

@ attach (o:WeatherStation)

@ getTemperature Jnteger

© setTempersture (temperaturelateger)

@ update()

GermanWeatherStation
@ update (subject:WeatherSensor)

Project | 7' weatherModel

Bl Proparties [) Ganesator Consoke

([Annstations 3, B StructurlInference Console E Behavioral Analyss Resul

B

B ti[# =0

Annctation

b € MultiReference (1 annotatio

4 £5 Observer (2 annotations)
4w Observer

Accuracy Value Annotated Elements

4005%

ject=
4 37 antecedent annotatior
& Delegation 100,00% calleeC callerC!
- 100,00% l h
E i 100,00% i
100,00%

% Overr
© [subject] WeatherSens
@ [observer] WeatherStal

@ Observer 3331%

How Reclipse works

‘ Structural T Source] Behavioral "

=Y
Patterns Code _-] r’ Traces ‘ ‘ Patterns
1 1 1 1

N Static Program , \ Dynamic
Analysis / / Execution / /' Analysis /
D Document 1
Y Process Step Pattern

Pattern Candidates

Accepted / Rejected
=) Data Flow Candidates

We’ll explain some of these processes later.

See Fujaba project at University of Paderborn

http://fujaba.www.de/

Outline

Program verification and property checking

Program verification

» The gold standard, ultimate guarantee
» Uses formal methods techniques, e.qg.,
» theorem proving
» model checking
» Drawback: needs precise formal specification to
verify against
» Very expensive to industry

» time consuming
» needs experts (logic/maths)

» Currently only used in safety critical domains

» e.g., railway, nuclear, aeronautics
» emerging: automobile, security

Example tools: SPARK, Event-B. See also general
purpose interactive theorem provers. Many other
research-quality and/or unmaintained tools.

http://www.adacore.com/sparkpro/
http://www.event-b.org/

Property checking
Lightweight formal methods

» Make specifications be standard and generic
» this program cannot raise NullPointerException
» all database connections are closed after use

Static checking (not verification)

» Prevent many violations of specification, not all

» May produce counterexamples to explain violations

» Chain pre-conditions (requires) and post-conditions
(ensures)

» allows inter-procedural analysis

Examples: Code Contracts, Splint, JML, Grammatech
CodeSonar, PolySpace, ThreadSafe, PRQA, Facebook
Infer.

http://research.microsoft.com/en-us/projects/contracts/default.aspx
http://www.splint.org/
http://www.eecs.ucf.edu/~leavens/JML/
http://www.grammatech.com/codesonar
http://www.grammatech.com/codesonar
http://www.mathworks.co.uk/products/polyspace/
http://www.threadsafe.com
http://www.programmingresearch.com/
http://fbinfer.com/
http://fbinfer.com/

Assertion checking

Many languages have support for assertions.

These are dynamic (runtime) checks that can be used to
test properties the programmer expects to be true.

assert(exp)

» fails if exp evaluates to false
» assertion tests usually disabled

» treated as comments
» may be enabled for testing during development
» or when running unit tests

Question. What is the risk with running tests only with
assertions enabled?

Assertions in Java

private static int addHeights(int ah, int bh) {
assert ah > 0 & bh > 0 : "parameters should be positive";
return ah+bh;

pause

Notice above method is private.

» API (public) functions should always test constraints

» throw exceptions if not met
» eliminate clients (or attackers) who break API
contract

» Internal functions may rely on local properties
» if maintained in same class, easier to check/ensure

Assertions for security

We could use assertions as safety checks for functions
that are at risk of being used in a buggy way.

assert(alloc_size(dest) > strlen(src));
strcpy(dest, src);

[alloc_size() is not a standard C function, but GCC, for example, has
support for trying to track the size of allocated functions with
function attributes]

http://gcc.gnu.org/onlinedocs/gcc/Function-Attributes.html

From dynamic to static

With static analysis, we may be able to automatically
determine whether assertions (if enabled) will:

1. always succeed
2. may sometimes fail (unknown)
3. will always fail

Easy cases:
1. assert(true);

2. x=readint(); assert(x>0);
3. assert(false);

The perfect case would be showing that assertions in a

program can only succeed: thus they do not need to be
checked dynamically.

Question. what troubles can you see with case 27?

Reasoning with assertions

How does a static analyser reason?

Computations about assertions can be chained through
the program, using a program logic inside the tool.

E.g., build up a set of facts known before each
statement:

// {} (nothing known)
X = 1; // {x=11}
y =1; // {x=1,y=11}
assert (x <vy); // FAIL

Symbolic evaluation

This can work also with variables, whose value is not
known statically:

// {} (nothing known)
X = z; /A x=2z}
y = z+1; // {x=2z y=2z+1}
assert (x <vy); // SUCCEED (provided no z<MAXINT)

Conditionals and loops
These make static analysis much harder, of course.

// {} (nothing known)

X = V; // {x=v}
if (x <) //
y =v; // {x=v, x<y}
assert (x < vy) // Either: {x=v,y=v}: FAIL

// 0r: {x=v,-(x<y)}: FAIL

For conditionals, we need to either

» explore every path
» merge information at join-points

For loops, we need to either

» unroll for a finite number of iterations
» capture variation using logical invariants

Security assertions

Using logical (or other) reasoning techniques, there are
various different types of assertions that are useful for
security checking, for example:

» Bounds and range analysis
» Tainted data analysis
» Type state and Resource tracking

Exercise. What kinds of security issues can these
assertions help with? What kinds of security issues
would need other assertions?

Bound/range Analysis

alloc_size(dest)>strlen(src)

array_size(a)>n before a[n] access

» Check integers are in required ranges

Taintedness

tainted(mypageinput)

untainted(newkey)

» Tracks whether data can be affected by adversary.

» Tainted input shouldn’t be used for security sensitive
choices

» and should be sanitized before being output

» Taint analysis approximates information flow

» information may be leaked indirectly as well as
directly

Type State (Resource) Tracking

isnull(ptr), nonull(ptr)
isopen_for_read(handle), isclosed(handle)
uninitialized(buffer), terminatedstring(buffer)

» Tracks status of data value held by a variable
» Helps enforce APl usage contracts to avoid errors

» e.g., DoS
» Usage/lifecycle may be expressed with automaton

Example: avoiding double-free errors

start - free (x) free (x)
] initial
state

(other operations) (other operations)

Null Point in CodeS
CODESONAR search | this analysis =] for Search Warnings | @ | Advanced Search
Home » findutils-4.2.27 > findutls-4.2.27 analysis 1 > Waming 52562 @ Text | XML | Visible Wamings: active]

Null Pointer Dereference at regeec c 1813
Jump to warning location |

Categories: LANG MEMNPD CWE 4761 Priority: PO High
Warning ID: 57 587 State: Assigned
Procedure: add_epsilon_src_nodes Finding: True Positive

Modified: ~ 01/13/11 140319 showdetais ~ Owner: None

edit properies
Show: Al events | Only primary events

c:\indutils-42.27\gnulb\ibvegexec.c Options @
N
1803 add_epsilon_src_nodes (re_dfs_t *dfs, re_node_set *dest_nodes,
1804 const re_node set *candidates)
1805 {
1806 reg_errcode_t err = REG_NOERROR;
1807 i
1808
A 1809 [+] re_dfastate_t *state = re_scquirs_state (ferr, dfa, dest_nodes);

ALEvent 4; stateis setto re_acquire_state (...), which evaluates to NULL, See related eventd & v hide
1810 4] ¥ if (BE (err i= REG_NOERROR, 0))

e retwrn err;

1612

1613 if ({ptate->inveclosure.allod)
Wall Poi .

ence
state is dereferenced here, but it is NULL
The issue can occurif the highlighted code executes

See related event 4
Show. All events | Only primary events
v

Change History
changed by amy at 01/13/11 14:03.07

 Priority changed from Noneto P0: High
« State changed from None to Assigned.
« Finding changed from None to True Positive.

Fix before next release.

Not all null pointer analyses are equal! Some compilers spot only
“obvious” null pointer risks, others perform deeper analysis like
CodeSonar. IDE analysis may be in between.

Code Contracts in .NET

public string ReturnfirstThreeCharacters(string s) {
return s.Substring(®, 3);

} string string.Substring(int startindex, int length) (+ 1 overload(s))
Retrieves a substring from this instance. The substring starts at a specified character position and has a specified length.

Exceptions:
Systemn. ArgumentOutOfRangeException
Contracts:
[Pure]
requires 0 <= startindex
requires 0 <= length
requires startlndex + length <= this.Length
ensures result != null
ensures result.Length == length

For Java, there is a language called JML which adds similar pre- and
post-conditions (requires/ensures). Open source JML toolsets have
been through several versions but have had trouble keeping up with
Java, Eclipse changes.

Outline

Bug finding

Bug finding

Bug finding tools look for suspicious patterns in code.

FindBugs is an example:

» Finds possible Java bugs according to rules

» rules are suspicious patterns in code
» designed by experience of buggy programs
» ...collected from real world and student(!) code

» Warnings are categorized by

» severity: how serious in general the problem is
» confidence: tool's belief of true problem

http://findbugs.sourceforge.net/

Example bugs

Common accidents

An error found in Sun’s JDK 1.6:

public String foundType() {
return this.foundType();
}

Misunderstood APIs

public String makeUserid(String s) {
s.toLowerCase();
return s;

Anti-idiom: double-checked locking in Java

if (this.fitz == null) {
synchronized (mylock) {
if (this.fitz == null) {
this.fitz = new Fitzer();

}

[dice]da: findbugs Fitz.class
M M DC: Possible doublecheck on Fizz.fitz in Fitz.getFitz()
At Fitz.java:[lines 1-3]

Findbugs GUI

File Edit Nevigation Designation Help

Package | Priority | Category | Bug Kind | Bug Pattern | «» | ¢ tiiava in edu.umd.cs.findbugs.
97 assert true; A
o= [edu.umd.cs.indbugs.config (3) o8 3 1
o= 7 du.umd.cs.indbugs filter (1) 99
- 7 edu.umd.cs.fndbugs.utl (1) 100 static final Pattern tag = Pattern.compile("~\\s%< (V)"
& CF Medium (1) 101 public static String getMLType (InputStrean in) throws IOl
¢ 7 Bad practice ¢1) 102 if {lin.narkSupported(]}
¢ Stream not closed on all paths (1) igz throw new [llegalArgumentException(”Input strean
¢ [Method may fail to close stream (1) o Smnmack (5000 5
[edu.umd.cs findbugs. util. Ut getdL e BufferedReader T - mulls
o 7 edu umd cs indbugs visitelass (1) 107 try (
& [etiu.umd e findbugs worklow (2) 108 r = mew BufferedReader (Util,getReader(in), 2000);
o] java.util (2) v 109
4] I I»] 110 String s;
111 int count 0z
unclassified ‘v‘ s uhite (count < 4y { |
113
114
115 break;
116 Matcher n = tag.matcher(s):
] I [[0
‘ - ‘ [Find Next Find Previous
edu.umd.cs findbugs util Uil gebeMLType (nputStream) may fail to close stream 2]
AtUtil javacliine 108)
In method edu.umd.cs.indbugs.ulil Ut getMLTypednputtream [Lines 102 - 123)
Neet o close java.in Readar

Method may fail to close stream

The method creates an 10 stream object, does not assign itto any fields, pass itto other methods that might elose it or return i, and does not appearto
close the stream an all paths out of the method. This may resultin a file descriptar leak. ltis generally a good idea to use @ tinally black lo ensure that
streams are losed

i UNIVERSITY OF
httpzifindbugs.sourceforge.net! fﬁy MARYLAND

Clang Static Analyser

An open source tool for C, C++, Objective-C included in
XCode.

» |ME le.m:24:1 3 [fool %

2. Object allocated on line 13 is no longer referenced after this pointand hasa... 3 (< =) (Done)
w| [} =
1 B
12 void foolint x, int y) {

13 id obj = [INSString allocl initl;

14 Method returns an Objective-C object with a +1 retain count (owning reference)

15 case @:

16 [obj releasel;

17 break;

18 case 1

19 s [obj autorelease];

20 break;

21 defyult:

22 break; 1

23 £
D 24 Object aliocated on line 13 is no longer after this point and has a retain count of +1 (object leaked) ¥

4

Clang Static Analyser HTML reports

openssl-1.0.0 - scan-build results

User: user@localhost

Working P 0.0

Command Line: make

Clang Version: clang version 3.4 (tags/RELEASE_34ffinal)

Date: FriJan 17 12:03:31 2014

Bug Summary

Bug Type Quantity Display?

All Bugs 269 “

API

Argument with 'nonnull attribute passed nul 7]

Dead store

Dead assignment 203 4

Dead increment 1 [}

Dead initialization 2 “

Logic error

Assigned value is garbage or undefined 3 «

Branch condition evaluates to a garbage value 1]

Dereference of null pointer 30 “

Division by zero 1 “

Result of operation is garbage or undefined 7 «

Uninitialized argument value 4 «

Reports

Bug Group Bug Type ~ File Line Path Length
AP Argument with 'nonnull attribute passed null sslid1_both.c 1015 9 View Report
AP Argument with 'nonnul attribute passed null sslid1_srvr.c 1184 10 Vigiw Réport
API Argument with ‘nonnull' attribute passed null ssl/s3_srvr.c 1725 10 View Report
AP Argument with ‘nonnull attribute passed null crypto/asni/a_bytes.c 205 21 View Report

Outline

How static analysis works

Basic overview

..Source - o _
 Code gty S >
Build Perform Present
Model Analysis Results
Security

Knowledge

Building a program model

Starts off like a compiler, in stages. Simpler/older static
analysis tools only use first stages.

Lexical analysis: tokenise input

Parsing: builds a parse tree from grammar
Abstract Syntax Tree: simplify parse tree
Semantic analysis

» check program well-formedness
» including type-checking

i N .

5. Produce an Intermediate Representation (IR)
» higher level than for compiler
6. Produce model to capture control/data flows

» control-flow and call graphs
» variable-contains-data relationships
» pointer analysis: aliasing, points-to

Control flow graphs

if (a > b) {
nConsec = 0;
} else {
sl = getHexChar(1l);
s2 = getHexChar(2);
}

return nConsec;

The CFG consists of basic blocks and the paths between
them.

bb1 bb2
nConsec = 0; | sl = getHexChar(a);
s2 = getHexChar (b) ;

bb3

‘ return nConsec; ‘

» A trace is a possible sequence of basic blocks.
» Above: [bb0,bbl,bb3] and [bb0,bb2,bb3].

Traces can be used to check against security constraints
(e.g., as automata), to construct counterexamples. The
CFG is also used to combine/chain assertions.

Call graphs

int a(int x) {
if (x) { b(1); } else { c(); }

}
int b(int y) {
if (y) { c(); b(0); } else { c(); }

}
int c() { /*x empty */ }

N

9

» Call graphs are used for inter-procedural analysis
» Check requires-ensures contracts connect together

Putting them together: local and global

Galysis Algorithm \

Local Analysis \ / Global Analysis
AST Call Graph

Control Flow Graph g}\

- S J

Outline

Summary

Take away points
Static analysis tools can help find security flaws.

Massive benefits:
» examine millions of lines of code, repeatedly

Some tools are generic bug finding, built into IDE.
Others are specific to security, may include.

» risk analysis, including impact/likelihood

» issue/requirements tracking

» metrics

Expect these (gradually?) to become mainstream

» current frequency of security errors unacceptable
» incentives will eventually affect priorities

References and credits

Some of this lecture is based Chapters 2-4 of

» Secure Programming With Static Analysis by Brian
Chess and Jacob West, Addison-Wesley 2007.

Recommended reading:
» Al Bessey et al. A few billion lines of code later:

using static analysis to find bugs in the real world,
CACM 53(2), 20101.

https://www.pearsonhighered.com/educator/product/Secure-Programming-with-Static-Analysis/9780321424778.page
http://dl.acm.org/citation.cfm?id=1646374
http://dl.acm.org/citation.cfm?id=1646374

	Overview
	Program understanding
	Program verification and property checking
	Bug finding
	How static analysis works
	Summary

