
Secure Programming Lecture 14:
Static Analysis II

David Aspinall

8th March 2016

Recap

We’re looking at

É principles and tools

for ensuring software security.

This lecture looks at:

É further example uses of static analysis
É some hints about how static analysis works

Advanced static analysis jobs

Static analysis is used for a range of tasks that are
useful for ensuring secure code.

Basic tasks include type checking and style
checking, described last lecture.

More advanced tasks are:

É Program understanding: inferring meaning
É Property checking: ensuring no bad behaviour
É Program verification: ensuring correct behaviour
É Bug finding: detecting likely errors

Program understanding tools
Help developers understand and manipulate large
codebases.

É Navigation swiftly inside the code
É finding definition of a constant
É finding call graph for a method

É Support refactoring operations
É re-naming functions or constants
É move functions from one module to another
É needs internal model of whole code base

É Inferring design from code
É Reverse engineer or check informal design

Outlook: may become increasingly used for security
review, with dedicated tools. Close relation to tools used
for malware analysis (reverse engineering).

Commercial example: Structure101 Research example: Fujaba and Reclipse



How Reclipse works

We’ll explain some of these processes later.

See Fujaba project at University of Paderborn

Program verification
É The gold standard, ultimate guarantee
É Uses formal methods techniques, e.g.,

É theorem proving
É model checking

É Drawback: needs precise formal specification to
verify against

É Very expensive to industry
É time consuming
É needs experts (logic/maths)

É Currently only used in safety critical domains
É e.g., railway, nuclear, aeronautics
É emerging: automobile, security

Example tools: SPARK, Event-B. See also general
purpose interactive theorem provers. Many other
research-quality and/or unmaintained tools.

Property checking
Lightweight formal methods

É Make specifications be standard and generic
É this program cannot raise NullPointerException
É all database connections are closed after use

Static checking (not verification)

É Prevent many violations of specification, not all
É May produce counterexamples to explain violations
É Chain pre-conditions (requires) and post-conditions

(ensures)
É allows inter-procedural analysis

Examples: Code Contracts, Splint, JML, Grammatech
CodeSonar, PolySpace, ThreadSafe, PRQA, Facebook
Infer.

Assertion checking

Many languages have support for assertions.

These are dynamic (runtime) checks that can be used to
test properties the programmer expects to be true.

assert(exp)

É fails if exp evaluates to false
É assertion tests usually disabled

É treated as comments
É may be enabled for testing during development
É or when running unit tests

Question. What is the risk with running tests only with
assertions enabled?

Assertions in Java

private static int addHeights(int ah, int bh) {
assert ah > 0 && bh > 0 : "parameters should be positive";
return ah+bh;

}

pause

Notice above method is private.

É API (public) functions should always test constraints
É throw exceptions if not met
É eliminate clients (or attackers) who break API

contract

É Internal functions may rely on local properties
É if maintained in same class, easier to check/ensure

Assertions for security

We could use assertions as safety checks for functions
that are at risk of being used in a buggy way.

assert(alloc_size(dest) > strlen(src));
strcpy(dest, src);

[alloc_size() is not a standard C function, but GCC, for example, has
support for trying to track the size of allocated functions with

function attributes]



From dynamic to static
With static analysis, we may be able to automatically
determine whether assertions (if enabled) will:

1. always succeed
2. may sometimes fail (unknown)
3. will always fail

Easy cases:

1. assert(true);
2. x=readint(); assert(x>0);
3. assert(false);

The perfect case would be showing that assertions in a
program can only succeed: thus they do not need to be
checked dynamically.

Question. what troubles can you see with case 2?

Reasoning with assertions

How does a static analyser reason?

Computations about assertions can be chained through
the program, using a program logic inside the tool.

E.g., build up a set of facts known before each
statement:

// { } (nothing known)
x = 1; // { x = 1 }
y = 1; // { x = 1, y = 1 }
assert (x < y); // FAIL

Symbolic evaluation

This can work also with variables, whose value is not
known statically:

// { } (nothing known)
x = z; // { x = z }
y = z+1; // { x = z, y = z+1 }
assert (x < y); // SUCCEED (provided no z<MAXINT)

Conditionals and loops
These make static analysis much harder, of course.

// {} (nothing known)
x = v; // {x=v}
if (x < y) //

y = v; // {x=v, x<y}
assert (x < y) // Either: {x=v,y=v}: FAIL

// Or: {x=v,¬(x<y)}: FAIL

For conditionals, we need to either

É explore every path
É merge information at join-points

For loops, we need to either

É unroll for a finite number of iterations
É capture variation using logical invariants

Security assertions

Using logical (or other) reasoning techniques, there are
various different types of assertions that are useful for
security checking, for example:

É Bounds and range analysis
É Tainted data analysis
É Type state and Resource tracking

Exercise. What kinds of security issues can these
assertions help with? What kinds of security issues
would need other assertions?

Bound/range Analysis

alloc_size(dest)>strlen(src)

array_size(a)>n before a[n] access

É Check integers are in required ranges



Taintedness

tainted(mypageinput)

untainted(newkey)

É Tracks whether data can be affected by adversary.
É Tainted input shouldn’t be used for security sensitive

choices
É and should be sanitized before being output
É Taint analysis approximates information flow

É information may be leaked indirectly as well as
directly

Type State (Resource) Tracking

isnull(ptr), nonull(ptr)

isopen_for_read(handle), isclosed(handle)

uninitialized(buffer), terminatedstring(buffer)

É Tracks status of data value held by a variable
É Helps enforce API usage contracts to avoid errors

É e.g., DoS

É Usage/lifecycle may be expressed with automaton

Example: avoiding double-free errors

Null Pointers in CodeSonar

Not all null pointer analyses are equal! Some compilers spot only
“obvious” null pointer risks, others perform deeper analysis like

CodeSonar. IDE analysis may be in between.

Code Contracts in .NET

For Java, there is a language called JML which adds similar pre- and
post-conditions (requires/ensures). Open source JML toolsets have

been through several versions but have had trouble keeping up with
Java, Eclipse changes.

Bug finding

Bug finding tools look for suspicious patterns in code.

FindBugs is an example:

É Finds possible Java bugs according to rules
É rules are suspicious patterns in code
É designed by experience of buggy programs
É . . . collected from real world and student(!) code

É Warnings are categorized by
É severity: how serious in general the problem is
É confidence: tool’s belief of true problem



Example bugs

Common accidents

An error found in Sun’s JDK 1.6:

public String foundType() {
return this.foundType();

}

Misunderstood APIs

public String makeUserid(String s) {
s.toLowerCase();
return s;

}

Anti-idiom: double-checked locking in Java

if (this.fitz == null) {
synchronized (mylock) {

if (this.fitz == null) {
this.fitz = new Fitzer();

}
}

}

[dice]da: findbugs Fitz.class
M M DC: Possible doublecheck on Fizz.fitz in Fitz.getFitz()

At Fitz.java:[lines 1-3]

Findbugs GUI

Clang Static Analyser

An open source tool for C, C++, Objective-C included in
XCode.

Clang Static Analyser HTML reports Basic overview



Building a program model

Starts off like a compiler, in stages. Simpler/older static
analysis tools only use first stages.

1. Lexical analysis: tokenise input
2. Parsing: builds a parse tree from grammar
3. Abstract Syntax Tree: simplify parse tree
4. Semantic analysis

É check program well-formedness
É including type-checking

5. Produce an Intermediate Representation (IR)
É higher level than for compiler

6. Produce model to capture control/data flows
É control-flow and call graphs
É variable-contains-data relationships
É pointer analysis: aliasing, points-to

Control flow graphs

if (a > b) {
nConsec = 0;

} else {
s1 = getHexChar(1);
s2 = getHexChar(2);

}
return nConsec;

The CFG consists of basic blocks and the paths between
them.

É A trace is a possible sequence of basic blocks.
É Above: [bb0,bb1,bb3] and [bb0,bb2,bb3].

Traces can be used to check against security constraints
(e.g., as automata), to construct counterexamples. The
CFG is also used to combine/chain assertions.

Call graphs
int a(int x) {
if (x) { b(1); } else { c(); }

}
int b(int y) {
if (y) { c(); b(0); } else { c(); }

}
int c() { /* empty */ }

É Call graphs are used for inter-procedural analysis
É Check requires-ensures contracts connect together

Putting them together: local and global Take away points
Static analysis tools can help find security flaws.

Massive benefits:

É examine millions of lines of code, repeatedly

Some tools are generic bug finding, built into IDE.

Others are specific to security, may include.

É risk analysis, including impact/likelihood
É issue/requirements tracking
É metrics

Expect these (gradually?) to become mainstream

É current frequency of security errors unacceptable
É incentives will eventually affect priorities



References and credits

Some of this lecture is based Chapters 2-4 of

É Secure Programming With Static Analysis by Brian
Chess and Jacob West, Addison-Wesley 2007.

Recommended reading:

É Al Bessey et al. A few billion lines of code later:
using static analysis to find bugs in the real world,
CACM 53(2), 20101.


