
Secure Programming Lecture 8++: SQL
Injection

David Aspinall, Informatics @ Edinburgh

9th February 2016

Recap

Injection attacks use specially crafted inputs to
subvert the intended operation of applications.

É OS Command Injections may execute arbitrary
commands.

É SQL Injections can reveal database contents,
affect the results of queries used for authentication;
sometimes they can even execute commands.

In this lecture we look at SQL Injections in more detail.

Context

SQL Injection (SQLi) is by some estimates the current
number one category of software vulnerability.

As with overflows, there is a large body of crafty
exploits made possible by (often small) errors in coding
or design.

We will look at:

É SQLi attack types and mechanisms
É detecting SQLi
É preventing SQLi

Even if you believe you are safe from SQLi, it is useful to
understand the range of problems and solutions. “No
SQL” databases doesn’t mean no-SQL like injections.

xkcd #327 (a classic) bobby tables.com: useful but incomplete SQL Queries

SQL: standard language for interacting with databases

É very common with web applications
É authentication: DB of users, passwords
É main function often data storage

É but also in desktop and server apps
É email clients/servers
É photo applications, media servers
É custom database clients
É application data caches

Question. Why might the second category cause
concern for security auditing?

Network versus local injections

Network usually considered the bigger risk

É Access by many, unknown users
É Network is gateway, crossing physical boundaries
É Risk in privileged servers (setguid, etc)

Local inputs: should they be considered too?

É Local users can only deny access to themselves
É desktop apps run as plain user, only risk own data

However, this trust assumption can be wrong:

É drive-by exploits attack locally (or use escalation)
É growing concerns over insider threats

How I hacked PacketStorm (1988-2000)

~ – Advisory RFP2K01 —————————— rfp.labs ————

"How I hacked PacketStorm"

A look at hacking wwwthreads via SQL

——————————- rain forest puppy / rfp@wiretrip.net — ~

É One of the first public examples and explanation
É Demonstrated retrieval of 800 passwords
É See Rain Forest Puppy’s advisory and his earlier

Phrack 54 article

Man steals 130m card records (2009)

Attempted handwritten attack (2010) Should know better (2011) Should know better (2013)

Should know better (2015) Typical vulnerability in PHP code
$username = $HTTP_POST_VARS['username'];
$password = $HTTP_POST_VARS['passwd'];

$query = "SELECT * FROM logintable WHERE user = '"
. $username . "' AND pass = '" . $password . "'";

...
$result = mysql_query($query);

if (!$results)
die_bad_login();

Guaranteed login! Try with:

user name: bob' OR user<>'bob
password: foo OR pass<>'foo

which gives

SELECT * FROM logintable WHERE user=
'bob' or user<>'bob' AND pass='foo' OR pass<>'foo'

Fixes: in-band versus out-of-band

É The “in-band” solution is to use filtering to escape
black-listed characters.
É PHP and MySQL provide functions to help do this,

guaranteeing meta-characters are quoted.

É The “out-of-band” fix is to use a prepared query with
parameters carved out for the substituted positions.
É Prepared query has placeholders for parameters

which will be safely substituted.

Question. Why might the out-of-band fix be preferable?

Typical setting for attacks

Picture from SQL Injection Attacks and Defense, J. Clarke, Syngress,
2012

Running example: servlet code

1 public class Show extends HttpServlet {
2 public ResultSet getuserlnfo(String login, String pin) {
3 Connection conn = DriverManager.getConnection("MyDB"};
4 Statement stmt = conn.createStatement();
5 String queryString = "";
6

7 queryString = "SELECT accounts FROM users WHERE ";
8 if ((! login.equals("")) && (! pin.equals(""))) {
9 queryString += "login='" + login +

10 "' AND pin=" + pin;
11 } else {
12 queryString+="login='guest'";
13 }
14

15 ResultSet tempSet = stmt.execute(queryString);
16 return tempSet;
17 }
18 }

Normal usage

7 queryString = "SELECT accounts FROM users WHERE ";
8 if ((! login.equals("")) && (! pin.equals(""))) {
9 queryString += "login='" + login +

10 "' AND pin=" + pin;
11 } else {
12 queryString+="login='guest'";
13 }

User submits login="john" and pin="1234"

SQL issued:

SELECT accounts FROM users WHERE login='john' AND pin=1234

Quotation and meta-characters
The warnings about meta-characters in shell commands
apply equally to SQL. And they can vary according to the
underlying DB engine, and flags which configure it. . .

Malicious usage

7 queryString = "SELECT info FROM users WHERE ";
8 if ((! login.equals("")) && (! pin.equals(""))) {
9 queryString += "login='" + login +

10 "' AND pin=" + pin;
11 } else {
12 queryString+="login='guest' ";
13 }

User submits login="admin' --" and pin="0"

SQL issued:

SELECT accounts FROM users WHERE login='admin' --' AND pin=0

Classifying SQL injections

There are a wide variety of SQL injection techniques.
Sometimes several are used to mount a single attack.

It’s useful to examine:

É route – where injection happens
É motive — what it aims to achieve
É SQL code — the form of SQL injected

These slides follow A Classification of SQL Injection Attacks and
Countermeasures by Halfond, Viegas and Orso. ISSE 2006.

Injection routes

É User input e.g., web forms via HTTP GET or POST
É Cookies used by web apps to build queries
É Server variables logged by web apps (e.g., http

headers)
É Second-order injection where injection is

separated from attack

Primary and auxiliary motives

Primary motives may be:

É Extracting data
É Adding or modifying data
É Mounting a denial of service attack
É Bypassing authentication
É Executing arbitrary commands

Auxiliary motives may be

É Finding injectable parameters
É Database server finger-printing
É Finding database schema
É Escalating privilege at the database level

Forms of SQL code injected

1. Tautologies
2. Illegal/incorrect queries
3. Union query
4. Piggy-backed queries
5. Inference pairs
6. Stored procedures and other DBMS features

Additionally, the injection may use alternate encodings
to try to defeat sanitization routines that don’t interpret
them (e.g., char(120) instead of x).

Exercise. For each of these types (described next),
consider what the primary/secondary motive(s) of the
attack could be.

Tautologies

Inject code into condition statement(s) so they always
evaluate to true.

SELECT accounts FROM users WHERE
login='' or 1=1 -- AND pin=

Blacklisting tautologies is difficult

É Many ways of writing them: 1>0, 'x' LIKE 'x', . . .
É Quasi tautologies: very often true RAND()>0.01, . . .

Question. Instead of a tautology, can you think of how
an attacker might use an always-false condition?

Illegal/incorrect

Cause a run-time error, hoping to learn information from
error responses.

SELECT accounts FROM users WHERE
login='' AND pin=convert(int,(select top 1 name from

sysobjects where xtype='u'))

É Supposes MS SQL server
É sysobjects is server table of metadata

É Tries to find first user table
É Converts name into integer: runtime error

Example response

Microsoft OLE DB Provider for SQL Server (Ox80040E07)
Error converting nvarchar value 'CreditCards'
to a column of data type int

Tells the attacker:

É SQL Server is running
É The first user-defined table is called CreditCards

Union query

Inject a second query using UNION:

SELECT accounts FROM users WHERE
login=” UNION SELECT cardNo from CreditCards where
acctNo=10032 -- AND pin=

É Suppose there are no tuples with login=''
É Result: may reveal cardNo for account 10032

Piggy-backed (sequenced) queries

Inject a second, distinct query:

SELECT accounts FROM users WHERE
login=’doe’; drop table users -- ’ AND pin=

É Database parses second command after ‘;’
É Executes second query, deleting users table
É NB: some servers don’t need ; character

Inference pairs

Suppose error responses are correctly captured and not
seen by the client.

It might still be possible to extract information from the
database, by finding some difference between outputs
from pairs of queries.

É A Blind Injection tries to reveal information by
exploiting some visible difference in outputs.

É A Timing Attack tries to reveal information by
making a difference in response time dependent on
a boolean (e.g., via WAITFOR)

If the attacker has unlimited access, these can be used
in repeated, automated, differential analysis.

Blind injection example

Idea: discover whether login parameter is vulnerable
with two tests.

Step 1. Always true:

login=’legalUser’ and 1=1 -- ’

Step 2. Always false:

login=’legalUser’ and 1=0 -- ’

Blind injection example

Step 1

SELECT accounts FROM users WHERE login=’legalUser’ and 1=1 -- ’

RESPONSE: INVALID PASSWORD
The attacker thinks:

Perhaps my invalid input was detected and
rejected, or perhaps the username query was
executed separately from the password check.

Blind injection example

Step 2

SELECT accounts FROM users WHERE login=’legalUser’ and 1=0 -- ’

RESPONSE: INVALID USERNAME AND PASSWORD
The attacker thinks:

Aha, the response is different! Now I can infer
that the login parameter is injectable.

Stored procedures

Stored procedures are custom sub-routines which
provide support for additional operations.

É May be written in scripting languages.
É Can open up additional vulnerabilities.

CREATE PROCEDURE DBO.isAuthenticated
@userName varchar2, @pin int
AS
EXEC("SELECT accounts FROM users
WHERE login=’" +@userName+ "’ and pass=’" +@pass+

"’ and pin=" +@pin);
GO

varchar2 is an Oracle datatype for variable length strings

Stored procedures

This is invoked with something like:

EXEC DBO.isAuthenticated 'david' 'bananas' 1234

Stored procedures

Or something like:

EXEC DBO.isAuthenticated(’ ; SHUTDOWN; --','','')

which results in:

SELECT accounts FROM users WHERE
login=’doe’ pass=’ ’; SHUTDOWN; -- AND pin=

An especially dangerous stored procedure

Microsoft SQL Server offers: xp_cmdshell, which allows
operating system commands to be executed!

EXEC master..xp_cmdshell 'format c:'

É Since SQL Server 2005, this is disabled by default
É . . . but can be switched back on by DB admins
É . . . maybe from inside the db?
É . . . access control and passwords critical inside DB.

Other database server features

There are other features offered variously depending on
the DBMS.

For example, queries in MySQL can write files with the
idiom:

SELECT INTO outfile.txt ...

Question. Why might writing files be of use to an
attacker?

How do I repair an SQLi vulnerability?

Mentioned last lecture:

É filtering to sanitize inputs
É prepared (aka parameterized) queries

Both methods are server, so it is better to use database
driver libraries whenever possible that abstract away
from the underlying DBMS.

In Java, JDBC provides the PreparedStatement class.

We’ll look at further relevant secure coding issues later lectures; in
particular, ways of managing input and also output filtering.

Question. What type of SQLi attacks might
PreparedStatements not prevent against?

How do I prevent SQLi vulnerabilities?

Choice of stages (as usual):

1. eliminate before deployment:
É manual code review
É automatic static analysis

2. in testing or deployment:
É manual test for vulnerabilities
É or use automatic scanners

3. after deployment:
É wait until attacked, manually investigate
É use dynamic remediation plus alarms (app firewall or

specialised technique)

Some examples follow.

Static prevention: automated analysis

Idea: static code analysis used to warn programmer or
prohibit/fix vulnerable code.

Techniques:

É Detect suspicious code patterns, e.g., dynamic
query construction

É Use static taint analysis to detect data-flows from
input parameters to queries

We’ll look at static analysis in more detail in later lectures

Dynamic detection tool: AMNESIA

Idea: use static analysis pre-processing to generate a
dynamic detection tool:

1. Find SQL query-generation points in code
2. Build SQL-query model as NDFA which models SQL

grammar, transition labels are tokens
3. Instrument application to call runtime monitor
4. If monitor detects violation of state machine,

triggers error, preventing SQL query

State machine for SQL production

É Variable beta: matches any string in SQL grammar
É Spots violation in injectable parameters

É abort query if model not in accepting state

See Halfond and Orso, AMNESIA: analysis and monitoring for
NEutralizing SQL-injection attacks, Automated Software Engineering,

2005

Dynamic prevention: SQLrand

Idea: use instruction set randomization to change
language dynamically to use opcodes/keywords that
attacker can’t easily guess.

See Boyd and Keromytis, SQLrand: Preventing SQL Injection Attacks,
Applied Cryptography and Network Security, 2004

Review questions

SQLi classification

É Describe three routes for SQL injection.
É Describe three auxiliary motives that an attacker

may have when using SQL injection techniques to
learn about a target.

SQLi prevention and detection

É How would you repair the prototypical example SQLi
vulnerability?

É Describe automatic ways to prevent and detect SQLi
vulnerabilities.

References and credits

This lecture includes content adapted from:

É A Classification of SQL Injection Attacks and
Countermeasures by Halfond, Viegas and Orso. ISSE
2006

É SQL Injection Attacks and Defense, Edited by Justin
Clarke, Syngress. 2nd Edition 2012.

