
Secure Programming Lecture 5: Memory
Corruption III (Heap and other attacks)

David Aspinall, Informatics @ Edinburgh

26th January 2016

Outline

Infamous attacks II

Recap

Heap overflows

Other memory corruption attacks

Type confusion errors

Summary

SQL Slammer Worm (2003)

É overflow in MS-SQL server, pure stack overflow
É 100,000 machines affected. Shutdown ATMs, 911

emergency lines in Seattle.
É Extreme rapid spread: 8 seconds doubling time
É Small size: one UDP packet 376 bytes.
É Removed by reboot; only action was re-transmit.
É Still fastest ever, 10 years later.

Conficker (2008)

É Windows Server; originally used counting error then
stack overflow. Newer variants used additional
infection mechanisms, e.g. USB autoplay spoof.

É Around 10 million machines infected.
É Infected machines join botnet, wait for C&C
É MS $250k reward for information still unclaimed

http://www.microsoft.com/conficker

Outline

Infamous attacks II

Recap

Heap overflows

Other memory corruption attacks

Type confusion errors

Summary

Memory corruption

Buffer overflow is still one of the most common
vulnerabilities being discovered and exploited in
commodity software.
We’ve seen examples of stack overflow exploits based
on buffer copying without checking bounds.
In this lecture we’ll see heap overflow exploits, and
explain some other causes of memory corruption.

Outline

Infamous attacks II

Recap

Heap overflows

Other memory corruption attacks

Type confusion errors

Summary

Heap overflows: overview

The heap is the region of memory that a program uses
for dynamically allocated data.
The runtime or operating system provides memory
management for the heap.
With explicit memory management, the programmer
uses library functions to allocate and deallocate regions
of memory.

Memory allocation in C

malloc(size) tries to allocate a space of size bytes.

É It returns a pointer to the allocated region
É . . . of type void* which the programmer can cast to

the desired pointer type
É or it fails and returns a NULL pointer
É The memory is uninitialised so should be written

before being read from

Question. Which points above contribute to unsafe
behaviour in C?

Memory allocation in C

calloc(size) behaves like malloc(size) but it also
initialises the memory, clearing it to zeroes.

Question. Suppose we allocate a string buffer, and
immediately assign the empty string to it.
What security reason may there be to prefer ‘calloc()‘
over ‘malloc()‘?

Memory allocation in C

free(ptr) frees the previously allocated space at ptr.

É No return value (void)
É If it fails (ptr a non-allocated value), what happens?

É if ptr is NULL, nothing
É “undefined” otherwise,
É program may abort, or might carry on and let bad

things happen

É What happens if ptr is dereferenced after being
freed?
É depends on behaviour of allocator

Question. Suppose we accidently call ‘free(ptr)‘ before
the final dereference of ‘ptr() but before another call to
‘malloc()‘. Is that safe?

Simple heap variable attack

Without memory safety, heap-allocated variables may
overflow from one to another.

char *user = (char *)malloc(sizeof(char)*8);
char *adminuser = (char *)malloc(sizeof(char)*8);

strcpy(adminuser, "root");

if (argc > 1)
strcpy(user, argv[1]);

else
strcpy(user, "guest");

/* Now we'll do ordinary operations as "user" and
create sensitive system files as "adminuser" */

É Is it possible to overflow user and change
adminuser ?

Simple heap variable attack

Problem: how do we know where the allocations will be
made?

É Heap allocator is free to allocate anywhere, not
necessarily in adjacent memory

Let’s investigate what happens on Linux x86, glibc.

Simple heap variable attack

#include <stdlib.h>
#include <string.h>
#include <stdio.h>

void main(int argc, char *argv[]) {

char *user = (char *)malloc(sizeof(char)*8);
char *adminuser = (char *)malloc(sizeof(char)*8);

strcpy(adminuser, "root");

if (argc > 1)
strcpy(user, argv[1]);

else
strcpy(user, "guest");

printf("User is at %p, contains: %s\n", user, user);
printf("Admin user is at %p, contains: %s\n", adminuser, adminuser);

}

$ gcc useradminuser.c -o useradminuser.out
$./useradminuser.out
User is at 0x9504008, contains: guest
Admin user is at 0x9504018, contains: root

$./useradminuser.out
User is at 0x9483008, contains: guest
Admin user is at 0x9483018, contains: root

$./useradminuser.out frank
User is at 0x8654008, contains: frank
Admin user is at 0x8654018, contains: root

É Buffers not adjacent, there’s some extra space
É Addresses not identical each run (next lecture. . .)
É But admin user is stored higher in memory!

Let’s try overflowing. . . .
$./useradminuser.out frank........david
User is at 0x9405008, contains: frank........david
Admin user is at 0x9405018, contains: id

Count more carefully:
$./useradminuser.out frank56789ABCDEFdavid
User is at 0x9f0b008, contains: frank56789ABCDEFdavid
Admin user is at 0x9f0b018, contains: david

Whoa!

Question. Can you think of a way to prevent this
attack?

Let’s try overflowing. . . .
$./useradminuser.out frank........david
User is at 0x9405008, contains: frank........david
Admin user is at 0x9405018, contains: id

Count more carefully:
$./useradminuser.out frank56789ABCDEFdavid
User is at 0x9f0b008, contains: frank56789ABCDEFdavid
Admin user is at 0x9f0b018, contains: david

Whoa!

Question. Can you think of a way to prevent this
attack?

Let’s try overflowing. . . .
$./useradminuser.out frank........david
User is at 0x9405008, contains: frank........david
Admin user is at 0x9405018, contains: id

Count more carefully:
$./useradminuser.out frank56789ABCDEFdavid
User is at 0x9f0b008, contains: frank56789ABCDEFdavid
Admin user is at 0x9f0b018, contains: david

Whoa!

Question. Can you think of a way to prevent this
attack?

Remarks about heap variable attack

É same kind of attack is possible for (mutable) global
variables, which are allocated statically in another
memory segment

É this is an application-specific attack, need to find
security-critical path near overflowed variable

É need to be lucky: overwriting intervening memory
might cause crashes later, before the program gets
to use the intentionally corrupted data

Is there a more generic attack for the heap?

Heap allocator implementation

A common heap implementation is to use blocks laid out
contiguously in memory, with a free list intermingled.
Heap blocks have headers which give information such
as:

É size of previous block
É size of this block
É flags, e.g., in-use flag
É if not in use, pointers to next/previous free block

The doubly-linked free list makes finding spare memory
fast for the malloc() operation.

Heap allocator implementation

typedef struct mallocblock {
struct mallocblock *next;
struct mallocblock *prev;
int prevsize;
int thissize;
int freeflag;
// malloc space follows the header

} mallocblock_t;

É If freeflag is non-zero, the block is in the freelist
É Allocator will split blocks and coalesce them again

General heap overflow attack

Rough idea:

É Coalescing blocks unlinks them from the free list
É Attacker makes unlink() do an arbitrary write!

É uses overflow to set next and previous
É and set flags to indicate free
É unlink() then performs write

Unlinking operation

void unlink(mallocblock_t *element) {
mallocblock_t *mynext = element->next;
mallocblock_t *myprev = element->prev;

mynext->prev = myprev;
myprev->next = mynext;

}

É performs two (related) word writes
É mynext->prev=*mynext+2, myprev->next=*myprev

É attacker arranges at least one of these to be useful

Exercise. Check you understand this: draw a picture of
a doubly linked list and explain how the attacker can
make an arbitrary write.

Writing to arbitrary locations

What locations might the attacker choose?

É Global Offset Table (GOT) used to link ELF-format
binaries. Allows arbitrary locations to be called
instead of a library call.

É Exit handlers used in Unix for return from main().
É Lock pointers or exception handlers stored in the

Windows Process Environment Block (PEB)
É Application-level function pointers (e.g. C++ virtual

member tables).

The details are intricate, but library exploits and tookits
are available (e.g., Metasploit).

Heap spraying and browser exploits

Apart from operating system (C code) memory
management, other application runtimes provide
memory allocation features, which may be accessible to
an attacker.

A particular case is in browser-based exploits which
have made use of heaps for managed runtimes such as
JavaScript, VBScript, Flash, HTML5.

Writing shell code to predictable heap locations is
sometimes called heap spraying. This is simple in
concept: string variables manipulated in scripts are
allocated in a heap.

Outline

Infamous attacks II

Recap

Heap overflows

Other memory corruption attacks

Type confusion errors

Summary

Out-by-one errors

É Mistaking the size of array

for (i=0; i<=sizeof(dest); i++)
dest[i]=src[i];

É Forgetting to account for string terminator in C

if (strlen(user) > sizeof(buf))
die("user string too long\n");

strcpy(buf, user);

Typical programming errors, may cause exploitable
memory corruption (overflow by one position),
depending on the application.

Integer overflow

Integer overflow (wrap-around) can cause memory
corruption errors.
Typical case: bounds are calculated based on user
inputs.

char *make_table(int width, int height, char* defaultrow) {
char *buf;
int n = width * height;
buf = (char*)malloc(n);
if (!buf)

return NULL;
for (i=i; i<height; i++)

memcpy(&buf[i*width], defaultrow, width);
}

Exercise. Show that with carefully chosen width and
height, it’s possible to perform a massive overflow.

Outline

Infamous attacks II

Recap

Heap overflows

Other memory corruption attacks

Type confusion errors

Summary

Typing discpline

Type safety

A programming language, analysis tool or runtime is said
to enforce type safety if it has a clearly specified
typing discipline for data values and it ensures that data
values (representations) for types stay within the
domain of those types during program execution.

C is not type safe!

C has overly flexible typing:

É implicit type conversions, inserted automatically
by the compiler, often for convenience of arithmetic
combining differently sized primitives.

É explicit type casts, where the programmer writes
foo = (sometype) bar;
A value in one type is treated as a value of another
type. For pointers, there is no effect: the pointed-to
values are not altered.

Numeric conversions may perform sign extension or
truncation.
Some conversions are implementation defined (i.e., are
not pinned down by the language, so vary depending on
the compiler, platform, etc).

Signed integer comparison vulnerability

int read_user_data(int socketfd) {
int length;
char buffer[1024];
length = get_user_length(socketfd);

if (length>1024) {
error("Input size too large\n");
return -1;

}
if (recv(socketfd, buffer, length)<0) {

error("Read format error\n");
return -1;

}
return 0; // success

}

É Here, a negative length defeats the size check. . .
É but recv accepts a size_t type, which is unsigned
É a negative value becomes a large positive one
É . . . and recv() overflows buffer.

Outline

Infamous attacks II

Recap

Heap overflows

Other memory corruption attacks

Type confusion errors

Summary

Memory corruption attacks

We’ve seen memory corruption attacks on the heap, on
the stack and elsewhere.
Overflow vulnerabilities in code are caused at least by:

É unchecked buffer boundaries
É out-by-one errors
É integer overflow
É type confusion errors

Review questions

Heap overflows

É Explain the API functions used to interface to heap
allocation in C. Give two examples of risky behaviour.

É Show how overflowing one heap-allocated variable
can corrupt a second.

É Sketch how a heap overflow attack can exploit
memory allocation routines to write to locations
controlled by an attacker.

Other vulnerabilities

É Explain type confusion errors, giving an example.

Coming next

Next time, we’ll look at countermeasures to overflows,
including protection mechanisms and secure
programming.

References and credits

É The Conficker autoplay image is from The Register.
É See Sophos article about Slammer, 10 years on.
É Heap overflows were first described by Solar

Designer. A longer article is in Phrack 57.

É Some of the examples were adapted from The Art of
Software Security Assessment.

http://www.theregister.co.uk/2009/01/20/win7_autoplay_weakness/
http://nakedsecurity.sophos.com/2013/01/27/memories-of-the-slammer-worm/
http://www.openwall.com/advisories/OW-002-netscape-jpeg
http://www.openwall.com/advisories/OW-002-netscape-jpeg
http://www.phrack.org/issues.html?issue=57
http://www.amazon.co.uk/Art-Software-Security-Assessment-Vulnerabilities/dp/0321444426
http://www.amazon.co.uk/Art-Software-Security-Assessment-Vulnerabilities/dp/0321444426

	Infamous attacks II
	Recap
	Heap overflows
	Other memory corruption attacks
	Type confusion errors
	Summary

