
Secure Programming Lecture 3:
Memory Corruption I (Stack Overflows)

David Aspinall, Informatics @ Edinburgh

19th January 2016

Introduction

This lecture begins our look at vulnerabilities, starting
with memory corruption.

Memory corruption vulnerabilities are ones where the
attacker can cause the program to write to certain areas
of memory (or write certain values) that the programmer
did not intend.

In the worst cases, these can lead to arbitrary
command execution under the attacker’s control.

We will look at the vulnerabilities, exploits, defences and
repair.

Introduction

Memory corruption vulnerabilities arise from possible:

É buffer overflows, in different places
É stack overflows
É heap overflows

É other programming mistakes
É out-by-one errors
É type confusion errors

Introduction

This course emphasises removing vulnerabilities in
software rather than crafting exploits.

But some insight into how exploits work is needed to
understand the reason for vulnerabilities, and how
defences and fixes work.

To understand buffer overflows, we need to look at some
basic low-level details.

Programming in C or assembler

É Low-level programs manipulate memory directly
É Advantage: efficient, precise
É Disadvantage: easy to violate data abstractions

É arbitrary access to memory
É pointers and pointer arithmetic
É mistakes violate memory safety

Memory safety

A programming language or analysis tool is said to
enforce memory safety if it ensures that reads and
writes stay within clearly defined memory areas,
belonging to different parts of the program.
Memory areas are often delineated with types and a
typing discipline.

Von Neumann programming model

É Von Neumann model:
É code and data are the same stuff

É Von Neumann architecture
É implements this in hardware
É helped revolution in Computing 1950s–1970s

É But has drawbacks:
É data path and control path overloaded (bottleneck)
É code/data abstraction blurred
É self-modifying code not always safe. . .



Close to the metal

Question. What are the trusted bits of code in this
picture? In what way do we trust them?

Further from the metal

Question. What are the trusted bits of code in this
picture? In what way do we trust them?

Processes and memory
A process is a running program managed by the
operating system.

Processes are typically organised into several memory
areas:

1. Code where the compiled program (or shared
libraries) reside.

2. Data where non-local program variables are stored.
This contains global or static variables and the
program heap for dynamically allocated data.

3. Stack which records dynamically allocated data for
each of the currently executing functions/methods.
This includes local variables, the current object
reference and the return address.

The OS (with the CPU, language runtime) can provide
varying amounts of protection between these areas.

Instant C programming

É You know Java; C uses a similar syntax
É It has no objects but

É pointers to memory locations (&val, *ptr)
É arbitrary-length strings, terminated with ASCII NUL
É fixed-size structs for records of values
É explicit dynamic allocation with malloc()

É It has no exceptions but
É function return code conventions

É Is generally more relaxed
É about type errors
É uninitialised variables

É But modern compilers give strong warnings
É even errors
É and can instrument C code with debug/defence code

Instant C programming

#include <stdio.h>

void main(int argc, char *argv[]) {

int c;

printf("Number of arguments passed: %d\n", argc);

for (c = 0 ; c < argc ; c++) {
printf("Argument %d is: %s\n", c+1, argv[c]);

}

}

Instant C programming

$ gcc showargs.c -o showargs
$ ./showargs this is my test
Number of arguments passed: 5
Argument 1 is: ./showargs
Argument 2 is: this
Argument 3 is: is
Argument 4 is: my
Argument 5 is: test
$



Instant C programming
#include <stdlib.h>
#include <string.h>
#include <stdio.h>

typedef struct list { int hd; struct list *tl; } list_t;

void printlist(list_t *l) {
while (l != NULL) {
printf("%i\n",l->hd); l=l->tl;

}
}
int main(int argc, char *argv[]) {

int c; list_t *cell = NULL;

for (c = argc-1; c > 0; c--) {
list_t *newcell = malloc(sizeof(list_t));
(*newcell).hd = (int)(strlen(argv[c]));
newcell->tl = cell;
cell = newcell;

}
if (cell != NULL) printlist(cell);

}

Instant C programming

$ gcc structeg.c -o structeg
$ ./structeg this is my different test
4
2
2
9
4

Exercise. If you haven’t programmed C before, try
these examples. Write a program to reverse its list of
argument words.

Instant assembler programming

É x86: hundreds of instructions! But in families:
É Data movement: MOV . . .
É Arithmetic: ADD, FDIV, IDIV, MUL, . . .
É Logic: AND, OR, XOR, . . .
É Control: JMP, CALL, LEAVE, RET,. . .

É General registers are split into pieces:
É 32 bits : EAX (extended A)
É 16 bits : AX
É 8 bits : AH AL (high and low bytes of A)

É Others are pointers to segments, index offsets
É ESP: stack pointer
É EBP: base pointer (aka frame pointer)
É ESI, EDI: source, destination index register

(We’ll stick to x86 32-bit instructions in this course,
64-bit is slightly different).

Instant assembler programming

Here is a file movc.c:

int value;
int *ptr;

void main() {
value = 7;
ptr = &value;
*ptr = value * 13;

}

Compile this to assembly code with:

$ gcc showargs.c -S -m32 movc.c

This produces a file movc.s shown next.

Instant assembler programming
.data
value:

.long 2
ptr:

.long 2
.text

movl $7, %eax ; set EAX to 7
movw %ax, value ; value is now 7
movl $value, ptr ; set ptr = address of value
movl ptr, %ecx ; ECX to same
movl value, %edx ; EDX = 7
movl %edx, %eax ; EAX = 7
addl %eax, %eax ; EAX = 14 (2*7)
addl %edx, %eax ; EDX = 7 + 14 = 21
sall $2, %eax ; EAX = 21 * 4 = 84 (12 * 7)
addl %edx, %eax ; EAX = 7 + 84 = 91 (13 * 7)
movl %eax, (%ecx) ; set value = 91

Exercise. If you haven’t looked at assembly programs
before, compile some small C programs and try to
understand the compiled asssembler, at least roughly.

Fun and profit

É Stack overflow attacks were first carefully explained
by Smashing the stack for fun and profit, a paper
written by Aleph One for the hacker’s magazine
Phrack, issue 49, in 1996.

É Stack overflows are mainly relevant for C, C++ and
other unsafe languages with raw memory access
(e.g., pointers and pointer arithmetic).

É Languages with built-in memory safety such as
Java, C#, Python, etc, are immune to the worst
attacks — providing their language runtimes and
native libraries have no exploitable flaws.



Stack overflow: high level view

...

return address

...

attack code

...

buffer

...

The malicious argument
overwrites all of the space
allocated for the buffer, all the
way to the return address
location.
The return address is altered
to point back into the stack,
somewhere before the attack
code.
Typically, the attack code
executes a shell.

How the stack works

É Recall Abstract Data Type (encapsulation)
principles:
É access to data possible only by ADT operations
É only data built via operations can be represented

É Recall the stack Abstract Data Type, a first-in
first-out queue:
É push(X): add an element X to the top
É pop(): remove and return the top element

How the stack works

The program stack (aka function stack, runtime
stack) holds stack frames (aka activation records) for
each function that is invoked.

É Very common mechanism for high-level language
implementation

É So has special CPU support
É stack pointer registers: on x86, ESP
É frame pointer registers: on x86, EBP
É push and pop machine instructions

É Exact mechanisms vary by CPU, OS, language,
compiler, compiler flags.

How the stack works

Stack
↑ high addresses

...

Data

Code
↓ low addresses

Memory

Stack usage with function calls

void fun1(char arg1, int arg2) {
char *buffer[5];
int i;
...

}

fun1 has two arguments arg1 and arg2.

É Actual parameters may be passed to the function
body on the stack or in registers; the precise
mechanism is called the calling convention.

fun1 has two local variables buffer and i

É Local variables are allocated space on the stack.

A frame pointer may be used to help locate arguments
and local variables.

Stack usage with function calls

...

...
previous

stack pointerframe for main()

arg2

arg1

return address

i

buffer stack pointer

frame for fun1()

...



Frame pointers
...

...

previous
stack, frame
pointers

frame for main()

arg2

arg1

return address

old frame ptr frame pointer

i

buffer stack pointer

frame for fun1()

...

Assembly code for function calls

Let’s look at some assembly code produced by gcc
compiling C programs on Linux (32 bit), using gcc -S.

int main() {
return 0;

}

produces:

main:
pushl %ebp ; save EBP, the old frame pointer
movl %esp, %ebp ; the new frame pointer for body of main()
movl $0, %eax ; the return value in EAX
popl %ebp ; restore the old frame pointer
ret

Assembly code for function calls

void fun1(char arg1, int arg2) {
char *buffer[5];
int i;
*buffer[0] = (char)i;

}
void main() {
fun1('a',77);

}

fun1:
pushl %ebp ; save previous frame pointer
movl %esp, %ebp ; set new frame pointer
subl $36, %esp ; allocate enough space for locals
movl -24(%ebp), %eax ; EAX = address of buffer[0]
movl -4(%ebp), %edx ; EDX = i
movb %dl, (%eax) ; Set buffer[0] to be low byte of i
leave ; drop frame
ret ; return

main:
pushl %ebp ; save previous frame pointer
movl %esp, %ebp ; set new frame pointer
subl $8, %esp ; allocate space for fun1 parameters
movl $77, 4(%esp) ; store arg2
movl $97, (%esp) ; store arg1 (ASCII 'a')
call fun1 ; invoke fun1
leave ; drop frame
ret ; return

Exercise. Draw the detailed layout of the stack when
the frame for ‘fun1()‘ is active.

Review questions

Program execution

É Explain the points of trust that exist when a Linux
user runs a program by executing a binary file.

Buffer overflows

É How do they arise?
É In what sense are some languages considered

immune from buffer overflow attacks?

Runtime stack basics

É Describe how function parameters and local
variables are allocated on the runtime stack.

Next time

We’ll continue looking at the detail of stack and buffer
overflow exploits.


