
Secure Programming Lecture 2:
Landscape

David Aspinall, Informatics @ Edinburgh

15th January 2016

Introduction

This lecture introduces some of the industry context
behind software security.

É timeline of attacks, notifications, responses
É security advisories and CVE-IDs
É implementing a software security strategy in an

organisation

Vulnerability and attacks timeline

Security advisories

Security advisories (aka bulletins) are issued by
software vendors

É public feeds, also private at earlier stages
É advance notification to high-value customers,

security companies
É maybe before patches are available
É Q. is that a good idea?

É public advisory usually when update available
É may be coordinated among vendors and upstream

developers

Various people (sys admins, downstream software devs,
users. . .) should monitor and act on advisories.

Security advisory format

Each vendor has own format. Typical information:

É Name, date, unique identification
É Criticality
É Affected products
É Solution

Varying amounts of information given:

É enough information to construct an exploit?
É if not, attackers may reverse engineer

patches/updates anyway
É disclosure has to be planned carefully

É typically by coordinated disclosure

Advisory we saw last time

Jan. 7, 2014 - Stack buffer overflow in parsing of BDF
font files in libXfont
CVE-2013-6462: An authenticated X client can cause
an X server to read a font file that overflows a buffer on
the stack in the X server, potentially leading to crash
and/or privilege escalation in setuid servers. The fix is
included in libXfont 1.4.7. See the advisory for more
details.

Advisory on xorg-announce

X.Org Security Advisory: CVE-2013-6462: Stack buffer overflow in
parsing of BDF font files in libXfont

Alan Coopersmith alan.coopersmith at oracle.com
Tue Jan 7 08:43:23 PST 2014

X.Org Security Advisory: January 7, 2014 - CVE-2013-6462
Stack buffer overflow in parsing of BDF font files in libXfont
==

Description:
============

Scanning of the libXfont sources with the cppcheck static analyzer
included a report of:

[lib/libXfont/src/bitmap/bdfread.c:341]: (warning)
scanf without field width limits can crash with huge input data.

Advisory on Red Hat enterprise-watch-list

-----BEGIN PGP SIGNED MESSAGE-----
Hash: SHA1

===
Red Hat Security Advisory

Synopsis: Important: libXfont security update
Advisory ID: RHSA-2014:0018-01
Product: Red Hat Enterprise Linux
Advisory URL: https://rhn.redhat.com/errata/RHSA-2014-0018.html
Issue date: 2014-01-10
CVE Names: CVE-2013-6462
===

1. Summary:

Updated libXfont packages that fix one security issue are now
available for Red Hat Enterprise Linux 5 and 6.

The Red Hat Security Response Team has rated this update as having
important security impact.
...

2. Relevant releases/architectures:

RHEL Desktop Workstation (v. 5 client) - i386, x86_64
Red Hat Enterprise Linux (v. 5 server) - i386, ia64, ppc, s390x, x86_64
Red Hat Enterprise Linux Desktop (v. 5 client) - i386, x86_64
Red Hat Enterprise Linux Desktop (v. 6) - i386, x86_64
Red Hat Enterprise Linux Desktop Optional (v. 6) - i386, x86_64
Red Hat Enterprise Linux HPC Node (v. 6) - x86_64
Red Hat Enterprise Linux HPC Node Optional (v. 6) - x86_64
Red Hat Enterprise Linux Server (v. 6) - i386, ppc64, s390x, x86_64
Red Hat Enterprise Linux Server Optional (v. 6) - i386, ppc64, s390x, x86_64
Red Hat Enterprise Linux Workstation (v. 6) - i386, x86_64
Red Hat Enterprise Linux Workstation Optional (v. 6) - i386, x86_64

3. Description:

The libXfont packages provide the X.Org libXfont runtime
library. X.Org is an open source implementation of the X Window
System.

A stack-based buffer overflow flaw was found in the way the
libXfont library parsed Glyph Bitmap Distribution Format (BDF)
fonts. A malicious, local user could exploit this issue to
potentially execute arbitrary code with the privileges of the
X.Org server. (CVE-2013-6462)

Users of libXfont should upgrade to these updated packages, which
contain a backported patch to resolve this issue. All running
X.Org server instances must be restarted for the update to take
effect.

4. Solution:

Before applying this update, make sure all previously-released
errata relevant to your system have been applied.

This update is available via the Red Hat Network. Details on how
to use the Red Hat Network to apply this update are available at
https://access.redhat.com/kb/docs/DOC-11259

5. Bugs fixed (https://bugzilla.redhat.com/):

1048044 - CVE-2013-6462 libXfont: stack-based buffer overflow flaw
when parsing Glyph Bitmap Distribution Format (BDF) fonts

6. Package List:

Red Hat Enterprise Linux Desktop (v. 5 client):

Source:
ftp://ftp.redhat.com/pub/redhat/linux/enterprise/5Client/en/os/SRPMS/libXfont-1.2.2-1.0.5.el5_10.src.rpm

i386:
libXfont-1.2.2-1.0.5.el5_10.i386.rpm
libXfont-debuginfo-1.2.2-1.0.5.el5_10.i386.rpm
...
...

7. References:

https://www.redhat.com/security/data/cve/CVE-2013-6462.html
https://access.redhat.com/security/updates/classification/#important

8. Contact:

The Red Hat security contact is <secalert redhat com>. More
contact details at
https://access.redhat.com/security/team/contact/

Copyright 2014 Red Hat, Inc.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1.4.4 (GNU/Linux)

iD8DBQFSz8HSXlSAg2UNWIIRAvo5AJ4976ATNgp8mmoyRgObDFnCvOP4zACfYWJc
f9VhkwpGzE3y3jtSD9fupVg=
=T7Wm
-----END PGP SIGNATURE-----

Example: HP Data Protector

Figure 1:

What is HP Data Protector?

How was this vulnerability found?

É Zero Day Initiative, started by TippingPoint, a
network security company
É part of 3Com, now HP

É Idea of crowd-sourcing vulnerability discovery
É Finding many vulnerabilities in enterprise software

É HP, Microsoft, CISCO, . . .

É Incentive programme rewarding participants
É $ reward, bonuses like DEFCON attendance
É advantages: independence, wider knowledge
É and presumably cheaper than direct employment

What is CVE?

É Started in 1999, originally at CERT
É CVE = Common Vulnerability Enumeration

É Aim: standardise identification of vulnerabilities
É before CVE, each vendor used its own scheme
É confusing multiple advisories for same problem

É Each vendor/distributor has own advisory channel
É CVE allows cross referencing, public standard ID
É Users or customers can check how CVEs are handled

É Moved to MITRE, a US R& D outfit
É CVE = Common Vulnerabilities and Exposures

É ITU-T adopted in 2011 as international
recommendation, X.CVE

Vulnerabilities versus Exposures

Vulnerability A mistake that can be used by a hacker to
violate a “reasonable” security policy for a
system (e.g., executing commands as another
user, violating access restrictions, conducting a
DoS attack)
Example: smurf vulnerability (ping server
responds to broadcast address)

Exposure A system configuration issue or mistake in
software that can be used by a hacker as a
stepping-stone into a system or network, e.g.,
gathering information, hiding activities.
Example: running open ‘finger‘ service; allows
attacker to probe network

CVE Identifiers

Consist of:

É CVE ID (number): CVE-1999-0067
É Brief description of vulnerability or exposure
É References, e.g., to reports or advisories

CVE IDs

CVE-ID Syntax Changing on January 1, 2014

Due to the ever increasing volume of public vulnerability
reports, the CVE Editorial Board and MITRE determined
that the Common Vulnerabilities and Exposures (CVE®)
project should change the syntax of its standard
vulnerability identifiers so that CVE can track more than
10,000 vulnerabilities in a single year.

New CVE ID format

Creating CVE Identifiers

1. Discover a potential V or E
2. Get a CVE Numbering Authority to give a number

É MITRE, big vendors (Apple, Google, MS, Ubuntu,. . .)
É Numbers reserved in blocks; “instantly” available

3. CVE ID number shared among disclosure parties
4. Advisory published, including CVE-ID number
5. MITRE updates master list

Only published CVE-ID Numbers are kept in master list.

CVE Compatibility

É Standard for “interoperability” or “comparability”
É For products and services
É Has some official requirements certified by MITRE

É ownership by legal entity
É responsibility, answering to reviews

É Capability required for tools, web sites
É CVE searchable
É Use standard document formats

BSIMM

Figure 2:

BSIMM: Building Security In Maturity Model

É BSIMM is a Maturity Model for real-world best
practices in software-producing companies
É examines Software Security Initiatives (SSIs)
É provides a “measuring stick”, state-of-the-art

É Introduced by Gary McGraw and others
É Author of Software Security: Building Security In

É Inspired by Capability Maturity Model (CMM)
(late 80s-90s)
É model of software development processes
É maturity = degree of formality/rigour of process
É 5 Levels: chaotic, repeatable, defined, managed,

optimizing

É Now at BSIMM-6, October 2015. About 70 orgs.

BSIMM goals

For organisations starting/running a Software Security
Initiative, BSIMM aims to:

É Inform risk management decisions
É Clarify “right thing to do” for those involved
É Reduce costs via standard, repeatable processes
É Improve code quality

This is done by planning a Software Security Initiative,
implementing activities selected from BSIMM. Activities
can be roled out according to the maturity level of the
organisation.

Implementing a SSI

May be a serious effort for a large organisation to
implement, and require a big budget.

Large companies can have:

É tens of thousands of software developers
É hundreds or thousands of applications in

development
É similarly many applications in deployment or sale

Systematic, explicit organisation of security goals are
needed to mange software security effectively.

The BSIMM Software Security Framework

BSIMM defines a Software Security Framework which
describes

É 12 practices organised into 4 domains
É Governance, Intelligence, Development, Deployment

É Each practice involves numerous activities
É Each practice split into maturity levels 1–3

É each maturity level has several activities

É BSIMM-V covers 112 activities
É New activities added when they appear in >1 org

The BSIMM Software Security Framework

Governance
Management, measurement, training.

SM Strategy and Metrics CP
Compiliance and Policy T
Training

The BSIMM Software Security Framework

Intelligence

Collecting data, issuing guidance, threat modelling

AM Attack Models SFD
Security Features and Design SR
Standards and Requirements

The BSIMM Software Security Framework

Secure Software Design Lifecycle (SSDL) Touchpoints

Software development artifacts and processes

AA Architecture Analysis CR
Code Review ST
Security Testing

The BSIMM Software Security Framework

Deployment

Configuration, maintenance, environment security

PT Penetration Testing SE
Software Environment CMVM
Configuration Management and Vulnerability
Management

Governance: Example maturity levels

Strategy and Metrics (SM) maturity levels:

1. Common understanding of direction, strategy
É everyone involved in creating software understands

written software security goals
É company management understand strategy for

achieving

2. Align behaviour with strategy
É software security leadership roles filled

3. Risk-based portfolio management
É top-level management learns about risk for each

application

Governance: Example activities

SM 1.4: Identify gate locations, gather necessary
artifacts
The software security process will involve release gates/
checkpoints/milestones at one or more points in the
SDLCs. First steps:

1. identify gate locations that are compatible with
existing development practices and

2. begin gathering the input necessary for making a
go/no go decision.

Importantly at this stage, the gates are not enforced. For
example, the SSG can collect security testing results for
each project prior to release, but stop short of passing
judgment on what constitutes sufficient testing or
acceptable test results.

Governance: Example activities

SM 2.2: Enforce gates with measurements and track
exceptions

SDLC security gates are now enforced: in order to pass a
gate, a project must either meet an established measure
or obtain a waiver. Even recalcitrant project teams must
now play along. The SSG tracks exceptions. A gate could
require a project to undergo code review and remediate
any critical findings before release. In some cases, gates
are directly associated with controls required by
regulations, contractual agreements, and other business
obligations and exceptions are tracked as required by
statutory or regulatory drivers. In other cases, gate
measures yield key performance indicators that are used
to govern the process.

Personal experience (2009-): mixed evidence

É Selling Software Quality tool for safety/security
É Java static analysis for concurrency

É Went into a number of large financial services orgs
É Found range of maturity levels. . .

BSIMM-V survey

É 67 organisations interviewed (over past 24 months)
É Range of industry sectors

É financial services
É independent software vendors
É cloud, retail, security, healthcare, media, . . .

É Results confidential. Some companies named, e.g.:
É Adobe, Intel, McAfee, Microsoft
É Bank of America, Capital One, Goldman Sachs, HSBC
É PayPal, Visa
É Marks and Spencer

É All orgs operate a Software Security Group
É responsible for carrying out software security
É mix of roles
É essential first step: management buy-in

É SSGs quite young (ave 5 years)

BSIM-V results: score card

Figure 3:

BSIM-V results: average best practice

Figure 4:

É uses spider diagram to show the “high watermark”
in each of the 12 practices, i.e., the highest maturity
level achieved

É for set of companies, take average high watermark

BSIM-V results: top 10

Figure 5:

BSIM-V results: sector comparison

Figure 6:

BSIM-V results: core activity in each practice

SM1.4 identify gate locations, to establish SSDL gates
CP1.2
identify Personally Identifiable Information (PII)
T1.1
provide security awareness training to promote
culture of security

AM1.2 create data classification scheme and inventory,
to prioritise applications SFD1.1
build and publish security features to create
guidance, proactively SR1.1
create security standards to meet demand for
security features

AA1.1 perform security feature review to get started
with architecture analysis CR1.4
use automated tools along with manual review
to drive efficiency/consistency ST1.3
drive tests with security requirements and
security features to start security testing in
familiar functional territory

PT1.1 use external penetration testers to find problems
to demonstrate that your organization’s code
needs help too SE1.2
ensure host and network security basics are in
place to provide a solid host/network foundation
for software CMVM1.2
identify software bugs found in operations
monitoring and feed them back to development
to use ops data to change dev behavior

BSIM-6 new activity

CMVM 3.4: Operate a bug bounty program

The organization solicits vulnerability reports from
external researchers and pays a bounty for each verified
and accepted vulnerability received. Payouts typically
follow a sliding scale linked to multiple factors, such as
vulnerability type (e.g., remote code execution is worth
$10,000 versus CSRF is worth $750), exploitability
(demonstrable exploits command much higher payouts),
or specific services and software versions
(widely-deployed or critical services warrant higher
payouts). Ad hoc or short-duration activities, such as
capture-the-flag contests, do not count.
(6% of survey operate such a programme in Oct 2015)

What was covered

From the outside:

É the vulnerability and attack process
É security advisories and CVEs

From the inside:

É BSIMM: a best-practice model for a Software
Security Initiative

É some of the activities in BSIMM
É state-of-the-art: results of the BSIMM-V survey

In later lectures we’ll return to CVEs and some of the
SSDLC and Deployment activities in BSIM.

Next time

Next time we’ll start looking at some overflow
vulnerabilities in more detail.

