
Secure Programming Lecture 1:
Introduction

David Aspinall, Informatics @ Edinburgh

12th January 2016



Orientation

É This course is Secure Programming.
É Aimed at Informatics 4th year and MSc students
É Primarily: those anticipating a career in software

É programming: architects, developers, testers, dots
É security: pentesters, malware/reverse engineers
É researchers: verification, compilers, language

design, dots

É It is taught by David Aspinall.
É I am a Reader in the School of Informatics at the

University of Edinburgh.

http://www.inf.ed.ac.uk/teaching/courses/sp/
http://homepages.inf.ed.ac.uk/da
https://en.wikipedia.org/wiki/Reader_%28academic_rank%29
http://www.inf.ed.ac.uk
http://www.ed.ac.uk


Outline

Recent motivations

Course syllabus

Software security overview

Practicalities

Structure of course

An example: overflow in X server

Summary



Heartbleed (2014)



Shellshock (2014)



Attacks can cause physical damage (2014)



Nobody can keep online records safe (2015)



Known good practice ignored (2015)



Why does this happen?

Ostensibly, many security failures are due to
software vulnerabilities.

Are they inevitable?

Many surrounding questions. Can we:

É find vulnerabilities (before attacks)?
É detect exploits in-the-wild?
É repair vulnerabilities (routinely/automatically)?
É program better to avoid vulnerabilities?
É measure risk associated with software?
É design or verify to prevent them?
É develop new technology to help the above?



Outline

Recent motivations

Course syllabus

Software security overview

Practicalities

Structure of course

An example: overflow in X server

Summary



What is this course about?
Mainly: building software that’s more secure

É finding security flaws in existing software
É avoiding flaws in new software
É techniques, tools and understanding to do this

also infrastructure around software:

É language, libraries, run-time; other programs
É data storage, distribution, protocols and APIs
É development methodologies

and in the first place, policies for security

É what should be protected
É who/what is trusted
É risk assessment: cost of defences.



Target audience

É Aimed at 4th year UGs, MSc by permission
É Should have passed 3rd year Computer Security

É Basic crypto, protocols, secure prog ideas

É Programming practice
É should be confident in programming
É necessarily will use a range of languages
É . . . including some C
É but don’t have be “master hacker”

É Programming theory
É interest in PL concepts and design
É knowledge of compilers useful
É also software engineering, esp, testing
É theory courses helpful, semantics



Why should you take this course?

Want to work in the cyber security industry?

É security appraisal, system and code reviewing
É pen-testing, ethical hacking
É malware analysis, reverse engineering
É operations and response (SOCs)
É innovation: start-ups, spin-outs
É cyber defence, attack, espionage
É Want to work in security research?
É academic (conceptual advances, fixing, breaking)
É commercial (breaking, fixing, defending)

(Hopefully): you think it’s fun and interesting!



Why should you not take this course?

É None of the previous points apply
É You don’t have the right background (see next slide)
É You don’t want to risk a relatively new course

É second time to run (2013/14 first time)
É still “bedding in”
É honest, constructive feedback is very welcome



Learning outcomes

Here is the list from the Course Catalogue Entry:

1. Know how to respond to security alerts (concerning
software)

2. Identify possible security programming errors when
conducting code reviews in languages such as Java,
C or Python

3. Define a methodology for security testing and use
appropriate tools in its implementation

4. Apply new security-enhanced programming models
and tools which help ensure security goals, e.g., with
access control, information flow tracking, protocol
implementation, or atomicity enforcement.

http://www.drps.ed.ac.uk/13-14/dpt/cxinfr11098.htm


Learning outcomes

Here is the list from the Course Catalogue Entry:

1. Know how to respond to security alerts (concerning
software)

2. Identify possible security programming errors when
conducting code reviews in languages such as Java,
C or Python

3. Define a methodology for security testing and use
appropriate tools in its implementation

4. Apply new security-enhanced programming models
and tools which help ensure security goals, e.g., with
access control, information flow tracking, protocol
implementation, or atomicity enforcement.

http://www.drps.ed.ac.uk/13-14/dpt/cxinfr11098.htm


Learning outcomes

Here is the list from the Course Catalogue Entry:

1. Know how to respond to security alerts (concerning
software)

2. Identify possible security programming errors when
conducting code reviews in languages such as Java,
C or Python

3. Define a methodology for security testing and use
appropriate tools in its implementation

4. Apply new security-enhanced programming models
and tools which help ensure security goals, e.g., with
access control, information flow tracking, protocol
implementation, or atomicity enforcement.

http://www.drps.ed.ac.uk/13-14/dpt/cxinfr11098.htm


Learning outcomes

Here is the list from the Course Catalogue Entry:

1. Know how to respond to security alerts (concerning
software)

2. Identify possible security programming errors when
conducting code reviews in languages such as Java,
C or Python

3. Define a methodology for security testing and use
appropriate tools in its implementation

4. Apply new security-enhanced programming models
and tools which help ensure security goals, e.g., with
access control, information flow tracking, protocol
implementation, or atomicity enforcement.

http://www.drps.ed.ac.uk/13-14/dpt/cxinfr11098.htm


Outline

Recent motivations

Course syllabus

Software security overview

Practicalities

Structure of course

An example: overflow in X server

Summary



Safety versus security

Safety is concerned with ensuring bad things don’t
happen accidently. For example, aeroplanes don’t fall
out of the sky because maintenance checks are
forgotten.

Security is concerned with with ensuring that bad
things don’t happen because of malicious actions by
others. For example, terrorists cannot drive bombs into
airport departure halls.

The distinction is sometimes blurred, and the two
interact in intriguing ways. (Q. why?)

http://en.wikipedia.org/wiki/2007_Glasgow_International_Airport_attack


The challenge of software security

Software artefacts are among the most complex built.

É Design flaws are likely

É Bugs seem inevitable

Flaws and bugs lead to vulnerabilities which are
exploited by attackers.

Often to learn secrets, obtain money. But many other
reasons: a security risk assessment for a system should
consider different attackers and their motives.



The challenge of software security

Software artefacts are among the most complex built.

É Design flaws are likely
É Bugs seem inevitable

Flaws and bugs lead to vulnerabilities which are
exploited by attackers.

Often to learn secrets, obtain money. But many other
reasons: a security risk assessment for a system should
consider different attackers and their motives.



The challenge of software security

Software artefacts are among the most complex built.

É Design flaws are likely
É Bugs seem inevitable

Flaws and bugs lead to vulnerabilities which are
exploited by attackers.

Often to learn secrets, obtain money. But many other
reasons: a security risk assessment for a system should
consider different attackers and their motives.



The challenge of software security

Software artefacts are among the most complex built.

É Design flaws are likely
É Bugs seem inevitable

Flaws and bugs lead to vulnerabilities which are
exploited by attackers.

Often to learn secrets, obtain money. But many other
reasons: a security risk assessment for a system should
consider different attackers and their motives.



Cost estimates are difficult



But it’s agreed they’re increasing. . .



Cyber warfare is real



Privacy is being eroded



Why isn’t software security better?



Why (else) isn’t software security better?

É Asymmetry: attackers have the advantage
É just need to find one viable attack route
É defenders have to anticipate all

É Attackers focus on weakest links:
É since 1990s, network defences vastly improved
É rise of insider threats

É Current penetrate-and-patch approach is broken
É understandable by managers (“show me the

problem!”)
É but no substitute for secure design



What’s the outlook?

New frontiers:

É PCs in decline, but connected devices increasing
É Mobile new target point (convergence, mobility)
É Internet of Things: repeating same mistakes!
É Cloud storage: storage providers, protocols
É Cyber resilience: speedy, automatic recovery
É Data sharing and its limits: privacy

New solutions:

É More and easier-to-use secure programming
É Defensive technologies continuing to evolve
É New cryptographic, verification techniques
É Old ideas re-appear: MLS, containment, isolation
É Updates: automatic, pushed patching



Outline

Recent motivations

Course syllabus

Software security overview

Practicalities

Structure of course

An example: overflow in X server

Summary



Delivery and assessment

We will have

É 16 lectures covering core course topics

É 3 lab sessions
É 1 coursework contributing 30% of final mark
É 1 written exam contributing 70% of final mark

Lecture slides will be made available in several formats.

They have numerous embedded links to useful resources
(the links are more noticeable in the online versions).

http://www.inf.ed.ac.uk/teaching/courses/sp/


Delivery and assessment

We will have

É 16 lectures covering core course topics
É 3 lab sessions

É 1 coursework contributing 30% of final mark
É 1 written exam contributing 70% of final mark

Lecture slides will be made available in several formats.

They have numerous embedded links to useful resources
(the links are more noticeable in the online versions).

http://www.inf.ed.ac.uk/teaching/courses/sp/


Delivery and assessment

We will have

É 16 lectures covering core course topics
É 3 lab sessions
É 1 coursework contributing 30% of final mark

É 1 written exam contributing 70% of final mark

Lecture slides will be made available in several formats.

They have numerous embedded links to useful resources
(the links are more noticeable in the online versions).

http://www.inf.ed.ac.uk/teaching/courses/sp/


Delivery and assessment

We will have

É 16 lectures covering core course topics
É 3 lab sessions
É 1 coursework contributing 30% of final mark
É 1 written exam contributing 70% of final mark

Lecture slides will be made available in several formats.

They have numerous embedded links to useful resources
(the links are more noticeable in the online versions).

http://www.inf.ed.ac.uk/teaching/courses/sp/


Delivery and assessment

We will have

É 16 lectures covering core course topics
É 3 lab sessions
É 1 coursework contributing 30% of final mark
É 1 written exam contributing 70% of final mark

Lecture slides will be made available in several formats.

They have numerous embedded links to useful resources
(the links are more noticeable in the online versions).

http://www.inf.ed.ac.uk/teaching/courses/sp/


Delivery and assessment

We will have

É 16 lectures covering core course topics
É 3 lab sessions
É 1 coursework contributing 30% of final mark
É 1 written exam contributing 70% of final mark

Lecture slides will be made available in several formats.

They have numerous embedded links to useful resources
(the links are more noticeable in the online versions).

http://www.inf.ed.ac.uk/teaching/courses/sp/


Lab sessions

Three 3hrs lab sessions.

Scheduled TBC.

É Week 4
É Week 6
É Week 8

Each session will examine some software vulnerabilities:
why they exist, how they can be discovered, exploited,
and repaired.

Labs may start with a short guided introduction.

Working together is encouraged. We want to foster
a supportive learning environment. Students who have
prior knowledge or expertise are especially welcome.



Formative feedback during Labs

One reason to introduce labs in this course is to allow us
to give face-to-face formative feedback on your
learning. medskip

We will do this by reviewing the results from one lab
session at the next lab session. To do this effectively we
will ask that you submit your work and/or discuss it
with us during the lab sessions. bigskip

Lab sessions will be run by me together with the course
TAs, who are Joseph Hallett and Arthur Chan.

http://www.inf.ed.ac.uk/people/students/Joseph_Hallett.html
http://www.inf.ed.ac.uk/people/students/Sheung_chi_Chan.html


Coursework

The coursework will be an assignment following a similar
pattern to the lab exercises: discover, exploit then
repair.

1. as usual: your work should be your own
2. no publication, please do not publish solutions

even after the deadline

(at least two reasons for last point).

The coursework deadline is scheduled for Week 8.



An ethical point (reminder)

Nothing in this course is intended as incitement
to crack into running systems!

É Breaking into systems to “demonstrate” security
problems at best causes a headache to overworked
sysadmins, at worst compromises systems for many
users and could lead to prosecution

É If you spot a security hole in a running system,
don’t exploit it, instead contact the relevant
administrators or developers confidentially.

É To experiment with security holes, play with your
own machine, or better, your own private
network of machines.



Communications

É New, evolving course:
É honest, constructive feedback is very welcome

É As with any course, I welcome
É questions after lectures
É questions by email

Shall we have a course-wide online facility? Open to
class opinion:

1. University forum (private in UoE)
2. University VLE tool (Learn)
3. Piazza for questions, discussion (signup)
4. None, but FAQs sent to class list sp-students by

email

Piazza is ready to use.



Exam

Will follow the common format:

É Choose 2 questions to answer from 3
É Two hours allowed

Towards the end of the course I will provide:

É a list of topics and concepts that may be examined
É a hint about the format of the questions

There is some guidance on the web along with a sample
question.



Outline

Recent motivations

Course syllabus

Software security overview

Practicalities

Structure of course

An example: overflow in X server

Summary



Dimensions: practice and theory
Practice

É Programming securely, identifying security issues
É Mistakes in language, APIs, crypto, comms. . .
É Ultimately: detailed, highly specific knowledge

Theory

É Understand reasons for failure, ways to mitigate
É Understand advanced techniques, automated tools
É In general: transferable concepts and methods.

This is not really a “vocational” course. I hope it will give
you the foundation to allow you to rapidly develop
detailed specific knowledge needed later. There are a
number of certification schemes for building practical
knowledge.



Overview of topics

General organisation:

1. Threats
2. Vulnerabilities
3. Defences
4. Processes
5. Emerging Methods

We’ll look at details under each of these headings (in
various orders).



1. Threats

É What attackers want, can do
É Types of bad code: malware, spyware, PUPs
É How bad code gets in
É Classification of vulnerabilities and weaknesses,

CVE/CWEs



2. Vulnerabilities

É Overflows – example next
É Injections
É Race conditions
É Information leaks



3. Defences

É Protection mechanisms
É Avoidance by secure coding
É Trade-offs in adding protection mechanisms



4. Processes

É Secure design principles
É Testing and reviewing to find vulnerabilities
É Assessing/measuring security of code



5. Emerging methods

É Methods and tools to find problems
É Detecting buggy patterns automatically
É Building security in, methodology and technology



Outline

Recent motivations

Course syllabus

Software security overview

Practicalities

Structure of course

An example: overflow in X server

Summary



1. Threats

General aim: services running on Unix systems should
be robust against local and remote attackers.

Otherwise: attackers may exploit a service to cause a
DoS attack, gain access to a system, etc.

For a specific system, a threat analysis would consider
the kinds of attackers and their motives (local? remote?
what is being protected?) and then all the services
running on the system.

Question. What’s the easiest form of defence?



2. Vulnerability

A security review should first discover (and then
monitor) relevant published security advisories.

For high value situations (and application code),
dedicated review may be needed.

Jan. 7, 2014 - Stack buffer overflow in parsing of BDF
font files in libXfont
CVE-2013-6462: An authenticated X client can cause
an X server to read a font file that overflows a buffer on
the stack in the X server, potentially leading to crash
and/or privilege escalation in setuid servers. The fix is
included in libXfont 1.4.7. See the advisory for more
details.



What is a BDF file?

STARTFONT 2.1
COMMENT
COMMENT Copyright (c) 1999, Thomas A. Fine
COMMENT
...
FONT -atari-small
SIZE 11 75 75
FONTBOUNDINGBOX 4 8 0 -1
STARTCHAR C000
ENCODING 0
SWIDTH 1 0
DWIDTH 4 0
BBX 4 8 0 -1
BITMAP
00
00
...

É BDF = Bitmap Distribution Format
É A (mostly) obsolete font format by Adobe



Advisory: Description
Scanning of the libXfont sources with the cppcheck static
analyzer included a report:

[lib/libXfont/src/bitmap/bdfread.c:341]: (warning)
scanf without field width limits can crash...

Evaluation of this report by X.Org developers concluded
that a BDF font file containing a longer than expected
string could overflow the buffer on the stack.
Testing in X servers built with Stack Protector resulted in
an immediate crash when reading a user-provided
specially crafted font.

As libXfont is used to read user-specified font files in all X
servers distributed by X.Org, including the Xorg server
which is often run with root privileges or as setuid-root in
order to access hardware, this bug may lead to an
unprivileged user acquiring root privileges in
some systems.



Advisory: Affected Versions

This bug appears to have been introduced in the initial
RCS version 1.1 checked in on 1991/05/10, and is
thus believed to be present in every X11 release
starting with X11R5 up to the current libXfont 1.4.6.
(Manual inspection shows it is present in the sources
from the X11R5 tarballs, but not in those from the X11R4
tarballs.)



The vulnerability in the code

338 char charName[100];
339 int ignore;
340

341 if (sscanf((char *) line, "STARTCHAR %s", charName) != 1) {
342 bdfError("bad character name in BDF filen");
343 goto BAILOUT; /* bottom of function, free and return error */
344 }



The vulnerability in the code
338 char charName[100];
339 int ignore;
340

341 if (sscanf((char *) line, "STARTCHAR %s", charName) != 1) {
342 bdfError("bad character name in BDF filen");
343 goto BAILOUT; /* bottom of function, free and return error */
344 }

SYNOPSIS

#include <stdio.h>

int sscanf(const char *str, const char
*format, ...);

DESCRIPTION

sscanf() scans input from the character string pointed
to by str, according to format string. This may contain
conversions; results are stored in locations pointed to by
the pointer arguments that follow format.



Advisory: Fix

diff --git a/src/bitmap/bdfread.c b/src/bitmap/bdfread.c
index e2770dc..e11c5d2 100644
--- a/src/bitmap/bdfread.c
+++ b/src/bitmap/bdfread.c
@@ -338,7 +338,7 @@ bdfReadCharacters(FontFilePtr file, FontPtr pFont, bdfFileState *pState,

char charName[100];
int ignore;

- if (sscanf((char *) line, "STARTCHAR %s", charName) != 1) {
+ if (sscanf((char *) line, "STARTCHAR %99s", charName) != 1) {

bdfError("bad character name in BDF filen");
goto BAILOUT; /* bottom of function, free and return error */

}

The text above is an example of a context diff which shows the
difference between two file versions. The patch command can be

used to update the older file given this text. You need to know how
to make and apply patches for this course.



Defences

Options:

É Disable service
É Repair service: downstream updates
É Mitigate impact of attack

In running systems:

É Have there been past attacks?
É Can we check for future ones?



Outline

Recent motivations

Course syllabus

Software security overview

Practicalities

Structure of course

An example: overflow in X server

Summary



Review questions

Safety versus Security

É Explain the difference between these two, and why
ensuring security may be harder.

Security flaws and their impact on society.

É Explain some recent secure programming flaws that
made the news and explain what the underlying
problems were.

É Discuss the fundamental reasons that software
security fails and the wider questions around cyber
security.



References and reading

The slides contain links which you can click on to find
referenced or connected material.

References and reading will also be given for each
lecture in a separate web page for that lecture. For this
lecture, see here.

There is no single recommended course textbook,
although a few books will be mentioned. See the page
above for pointers.

http://www.inf.ed.ac.uk/teaching/courses/sp/2015/lecs/01-intro-refs.html

	Recent motivations
	Course syllabus
	Software security overview
	Practicalities
	Structure of course
	An example: overflow in X server
	Summary

