
Scripted Components

Dr. James A. Bednar
jbednar@inf.ed.ac.uk

http://homepages.inf.ed.ac.uk/jbednar

SEOC2 Spring 2005: Scripted Components 1

Scripted Components: Problem

(Cf. Reuse-Oriented Development; Sommerville 2004

Chapter 4, 18)

A longstanding goal of software developers has been to

be able to build a large application by gluing together

previously written reusable components.

Despite decades of work and successes in some areas,

such as system libraries, this goal remains largely

unfulfilled. Why?

SEOC2 Spring 2005: Scripted Components 2

Problems with Components

Reuse of components is hard! E.g.:

• Components rarely have matching interfaces

• Existing components are difficult to adapt to new

applications

• Vicious cycle: without expectation of reuse, no

incentive for making reusable components

SEOC2 Spring 2005: Scripted Components 3

Single-Language Assumption

Ousterhout 1998: Part of the reason for low levels of reuse

has been the mistaken assumption that components

should be created and used in a single language.

Underlying problem: languages best suited for creating

components are worst suited for gluing them together, and

vice versa.

SEOC2 Spring 2005: Scripted Components 4



Requirements for Building
Components

To implement useful, high-performance primitives, you

typically need:

• Speed

• Memory efficiency

• Bit-level access to underlying hardware and OS

SEOC2 Spring 2005: Scripted Components 5

Systems Languages

The requirements for building components are met by

systems languages like C and C++.

Systems languages allow (and typically require) detailed

control over program flow and memory allocation.

With such power available, strong typing (e.g. strict

inheritance hierarchies) is necessary to prevent

catastrophic errors.

SEOC2 Spring 2005: Scripted Components 6

Requirements for Gluing
Components

To glue primitive components written by multiple

independent developers into an application, you want:

• Weak or no typing, to allow different interfaces to connect

• A small number of high-level, widely shared interface

datatypes (e.g. strings, objects)

• Automatic memory management, etc., to allow one-off

data structures to be created easily for gluing

• Graceful user-relevant error handling, debugging

SEOC2 Spring 2005: Scripted Components 7

Scripting Languages

Gluing components from independent developers in

systems languages requires huge amounts of code and

much time debugging, often swamping any benefit of reuse.

Scripting languages excel at gluing, because they insulate

the user from the details of program flow, memory

allocation, and the operating system.

Scripting languages are good for manipulating (analyzing,

testing, printing, converting, etc.) pre-defined objects and

putting them together in new ways without having to worry

much about the underlying implementation.

SEOC2 Spring 2005: Scripted Components 8



Scripting Language Features
Typically:

Interpreted: for rapid development and user modification

High-level: statements result in many machine instructions

Garbage-collected: to eliminate memory allocation code

and errors

Untyped: to simplify gluing

Slow: for native code (but can use fast external components)

Examples: Python, Perl, Scheme/Lisp, Tcl, Visual Basic

sh/bash/csh/tcsh

SEOC2 Spring 2005: Scripted Components 9

Scripted Components: Pattern

Use a scripted language interpreter to glue reusable

components together, packaging an application as:

• An interpreter

• A component library (preferably mostly preexisting)

• Scripts to coordinate the components into a

meaningful system

Applications can be tailored to specific tasks by modifying

the script code, potentially by end users. Configur ation

options can be saved within the scripting language itself.

SEOC2 Spring 2005: Scripted Components 10

Scripted Components:
Advantages

• Helps make maintaining a large code body practical

• Increases long-term maintainability because

application can be reconfigur ed as needs change

• Promotes reuse

(and thereby development of reusable components)

• Provides separation between high-level and low-level

issues (and programmers?)

• Greatly reduces total size of code, and/or expands

functionality

SEOC2 Spring 2005: Scripted Components 11

Scripted Components: Liabilities

• Can be complicated to bind languages together

(but see SWIG)

• Must learn and maintain source code in multiple

languages

• Can be slow if critical components are implemented in

the script language

• Largest benefit requires existing components

SEOC2 Spring 2005: Scripted Components 12



Scripted Components: Example

Emacs editor, version 21.3

Core rarely-changed code written in C (265 KLOC),

implementing custom LISP interpreter and

performance-critical components.

Rest in LISP (580 KLOC), most of it user-contributed

(i.e., written independently).

Maintained continuously for more than 30 years, by

hundreds (thousands?) of people.

SEOC2 Spring 2005: Scripted Components 13

Scripted Components: Examples

Other examples:

• Matlab

• Gimp

• LaTeX

• Many domain-specific systems

• Anything with macros, a confi guration file , etc.

(all large programs?)

SEOC2 Spring 2005: Scripted Components 14

Custom vs. Off-the-Shelf

Most existing large, long-lived programs use custom

languages for macros or confi guration, but those are hard

to maintain, hard to learn, not shared between programs

(limiting reuse), and limited in functionality.

Modern approach: Plug-in scripting languages.

Many now available freely, with large bodies of reusable

component libraries. Just download one and get to work!

E.g. Python, Guile (Scheme), Tcl, Perl

SEOC2 Spring 2005: Scripted Components 15

Java?

Where does Java fit into this worldview?

Ousterhout: Java is a systems language, good for

implementing components, that happens to be interpreted

(like a script language).

Me: Maybe. To me Java seems weak as a component

implementation language (compared to performance of

e.g. C++), but also weak as a gluing language (due to

strong typing). Thus it seems like a compromise between

scripting and systems languages, when Scripted

Components offers best of both (at a cost of complexity).

SEOC2 Spring 2005: Scripted Components 16



Required Reading

Ousterhout 1998, http://home.pacbell.net/ouster/scripting.html

Note that the author developed the Tcl scripting language,

and thus is strongly biased towards it. I personally think

object-oriented scripting languages like Python are much

better for scripting object-oriented components, because

objects in the component language appear as native

objects in the scripting language.

Nat Pryce, http://www.doc.ic.ac.uk/∼np2/patterns/scripting/scripting.html

SEOC2 Spring 2005: Scripted Components 17

Summary

• Scripted Components pattern applies to many (most?)

large-scale systems

• Allows high-level, abstract languages to be used for

high-level tasks

• Allows low-level systems languages to be used for

low-level tasks

• Provides and encourages component reuse

• Scripting languages now freely available

• Avoid writing custom configur ation or macro languages

SEOC2 Spring 2005: Scripted Components 18

References

Ousterhout, J. K. (1998). Scripting: Higher level programming for the

21st century. Computer, 31 (3), 23–30.

Sommerville, I. (2004). Software Engineering. Reading, MA: Addison-

Wesley, 7th edn.

SEOC2 Spring 2005: Scripted Components 18


