
Semester Summary

Dr. James A. Bednar
jbednar@inf.ed.ac.uk

http://homepages.inf.ed.ac.uk/jbednar

SEOC2 Spring 2005: Semester summary 1



SEOC2 Overview

In this lecture we review the topics we have covered this

semester, focusing on what I consider the most important

points to remember.

The lecture slides on each topic, coupled with the required

readings as distributed in class or listed at the end of

some lectures, contain all of the basic material required to

prepare for the exam.

The background readings listed on the course web page,

plus experience gained during the practical assignments,

will help you achieve excellent, not just satisfactory, results.

SEOC2 Spring 2005: Semester summary 2



Design Patterns

You should know what a design pattern is, how to use

them, why they are useful for large teams, and several

example patterns (e.g. Composite and Proxy).

Book: Gamma et al. 1995

Web: Search for “design patterns”, etc.

SEOC2 Spring 2005: Semester summary 3



Architectural Patterns

You should know what a high-level architectural pattern is,

and how to use and apply several high-level architectural

patterns suitable for different types of systems:

High level decompositions: e.g. Layers

Distributed systems: e.g. Broker

Interactive systems: e.g. Model-view-controller

Adaptable systems: e.g. Reflection

Configurable systems: e.g. Scripted Components

Book: Buschmann et al. 1996, A System of Patterns, Chapter 2
SEOC2 Spring 2005: Semester summary 4



Scripting Reusable Components

You should know why reuse is difficult and rare, some

properties that make some languages more suitable for

building components and others for gluing them together,

and how the Scripted Components pattern facilitates

component reuse.

Article: Ousterhout 1998

Web: http://www.doc.ic.ac.uk/˜np2/

patterns/scripting/scripting.html

SEOC2 Spring 2005: Semester summary 5



Methodologies (1)

You should know the essentials of at least four

development methodologies, including their strengths,

disadvantages, and basic tenets:

The Waterfall Model
The Unified Process (UP)
Extreme Programming (XP)
The Cleanroom Process

Only basic knowledge is expected for the Waterfall and

Cleanroom processes; we covered the other two in some

detail.

SEOC2 Spring 2005: Semester summary 6



Methodologies (2)

Book : Jacobson, Booch and Rumbaugh 1998 The Unified

Software Development Process, Chapter 1

Web:

www-306.ibm.com/software/awdtools/rup

The UP according to IBM/Rational Software

Web: www.extremeprogramming.org gives an

introduction to XP

SEOC2 Spring 2005: Semester summary 7



Open source
You should know the assumptions behind open-source

and closed-source approaches, the advantages and

disadvantages of each, and several ways in which

successful open-source development efforts have been

structured:

Benevolent dictatorship: e.g. Linux
Open committee: e.g. Apache
Ring-fenced committee: e.g. Mozilla

Web: www.opensource.org/ : OSI site

Web: http://www.catb.org/˜esr/writings/cathedral-bazaar/

Article: Mockus et al. 2002

SEOC2 Spring 2005: Semester summary 8



Measurement

You should know the sorts of things to include in a

software measurement plan. In particular, you should know:

Some key issues to address: e.g. Growth measures

Means of identifying issues: e.g. Risk assessments

What to measure for various issues: e.g. Number of
components

Limitations of measurement: e.g. Incremental design
means measuring incomplete functions.

Basic estimators: e.g. Plot of staff months against
number of lines of source code.

Book : Humphrey 2002 chapter 4

SEOC2 Spring 2005: Semester summary 9



Estimating size and effort

You should know several methods for estimating software size:

Consensus methods: e.g. Delphi

Population data methods: e.g. Fuzzy

Standard component methods: e.g. Component estimating

Function based methods: e.g. Function point analysis

And how COCOMO can be used to estimate effort, given the size.

Book : Humphrey 2002 chapter 5

Web: sunset.usc.edu/research/COCOMOII :

COCOMO site

SEOC2 Spring 2005: Semester summary 10



Verification and validation

You should know the difference between verification and

validation, why both are important, and the basics, pros,

and cons for several techniques for V & V, e.g. black/clear

box testing and formal proofs of correctness. You also

know the different levels at which V & V is applied, and

some ways to do tests at each level:

• Unit tests
• Integration testing
• System testing
• Regression testing

Book : Sommerville 1996 Software Engineering Chapters 22, 23 and 24
SEOC2 Spring 2005: Semester summary 11



SW Project Management Tools

You should know several categories of useful tools, and

have some familiarity with at least one suitable tool in

each category, particularly the first two:

Build control (e.g. make )

Revision control (e.g. CVS)

Unit/regression testing (e.g. JUnit )

Bug/issue tracking (e.g. GNATS)

Documentation generation (e.g. JavaDoc )

Integrated suites (e.g. RUP)

Web: See tools.html on the course web page

SEOC2 Spring 2005: Semester summary 12



Risk reduction patterns

You should be able to analyze some risks faced by particular

projects and organizations, including how to reduce them

and how to tell when too much correction has been applied:

Knowledge inadequacies: e.g. Prototype
Teaming: e.g. Holistic diversity
Productivity: e.g. Gold rush
Ownership: e.g. Owner per deliverable
Distractions: e.g. Team per task
Training: e.g. Day care

Web: members.aol.com/acockburn/riskcata/

riskbook.htm : Cockburn’s risk patterns

SEOC2 Spring 2005: Semester summary 13



Economics of quality

You should know some of the factors involved in

developing high-quality software:

Tradeoffs: cost/benefit, feature/bug

Differences between achieving quality through inspection

or through testing

How to model quality improvements

Book : Sommerville 1996 Software Engineering Chapter 29

SEOC2 Spring 2005: Semester summary 14



Standards

You should have a basic familiarity with software

standards:

Why they are useful: e.g. Repeatability of process

Their legal implications: e.g. Fault attribution

Key organizations producing standards: e.g. IEEE, ISO

Examples of standards in key areas: e.g. Systems

engineering standards, process standards

You will not need to memorize any individual standards.

Book : Moore 1998 Software engineering Standards
SEOC2 Spring 2005: Semester summary 15



Software failures

You should know about the sorts of pathological problems

which can occur on large projects:

Organization problems: e.g. Poor reporting structures

Management problems: e.g. Political pressures

Problems conducting the project at each phase: e.g.
being technology focused in the initial phase

Book : Flowers 1996

Web: www.cs.nmt.edu/˜cs328/reading/

Standish.pdf : Summary of the 1995 Standish Group report

Web: catless.ncl.ac.uk/Risks/ : the Risks Digest

SEOC2 Spring 2005: Semester summary 16



Exam preparation

Old exams are on inf.ed.ac.uk, but remember that the

content of the course is slightly different every year.

Compared to recent years, I put less emphasis on formal

methods, automation/synthesis, and agents. Compared to

much older versions of the course (2000 and earlier), this

year had no prerequisite for knowing details of UML

beyond use case diagrams.

In general, just review the lecture slides and required

reading, following up with your own web exploration or

other books wherever your interests take you.

SEOC2 Spring 2005: Semester summary 17



Summary

• Large-scale, long-term software development is
extremely difficult and unpredictable

• In SEOC2 you have been exposed to some useful
approaches and tools

• These approaches and tools can help, but are not
guaranteed cures

• Always be on the lookout for risks and indications that
your project is headed for failure, so that you can
address the issues or abort the project when appropriate.

• Good luck beating the odds!

SEOC2 Spring 2005: Semester summary 18



References

Flowers, S. (1996). Software Failure: Management Failure: Amazing

Stories and Cautionary Tales. Reading, MA: Addison-Wesley.

Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1995). Design Pat-

terns: Elements of Reusable Object-Oriented Software. Reading,

MA: Addison-Wesley.

Humphrey, W. S. (2002). A Discipline for Software Engineering. Reading,

MA: Addison-Wesley.

Mockus, A., Fielding, R., & Herbsleb, J. D. (2002). Two case studies

of open source software development: Apache and Mozilla. ACM

SEOC2 Spring 2005: Semester summary 18



Transactions on Software Engineering and Methodology, 11 (3),

309–346.

Ousterhout, J. K. (1998). Scripting: Higher level programming for the

21st century. Computer, 31 (3), 23–30.

SEOC2 Spring 2005: Semester summary 18


