
Development Methodologies

Dr. James A. Bednar
jbednar@inf.ed.ac.uk

http://homepages.inf.ed.ac.uk/jbednar

Dr. David Robertson
dr@inf.ed.ac.uk

http://www.inf.ed.ac.uk/ssp/members/dave.htm

SEOC2 Spring 2005: Methodologies 1

Development Methodologies

A methodology is a system of methods and principles

used in a particular “school” of software design.

There is a wide variety of published methodologies, and

an even larger set of informal and/or company-specific

methodologies. The most mature methodologies are often

codified using specialist tools and techniques.

All methodologies are controversial, because some people

argue that any fixed methodology is an affront to a

professional, creative, independent designer, while the

rest argue about which methodology is best.

SEOC2 Spring 2005: Methodologies 2

Example Methodologies

In this course we will discuss three main methodologies,

and some variants:

• The Waterfall Model

• The Unified Process (UP)

• Extreme Programming (XP)

We will also discuss open-source design, which is more of

a philosophical approach than a methodology like the

others, but which has implications for methodology.

SEOC2 Spring 2005: Methodologies 3

Waterfall Model

(Royce 1970) Inspired by older engineering disciplines,

such as civil and mechanical (e.g. how cathedrals are built)

Development of a release is broken into phases, each of

which is completed and “signed-off” before moving on.

When problems are found, must backtrack to a previous

phase and start again with the sign-off procedures.

Much time and effort is spent on getting early phases

right, because all later phases depend on them.

SEOC2 Spring 2005: Methodologies 4



Waterfall Model of One Release

Implementation

System test

Revalidation

Product verification

Unit test

Verification

Verification

Validation

Validation

System feasibility

Product design

Detailed design

Code

Integration

Plans and requirements

Operation and
maintenance

SEOC2 Spring 2005: Methodologies 5

Problems with Waterfall Model

In practice it is rarely possible to go straight through from

requirements to design to implementation, without

backtracking.

There is no feedback on how well the system works, and

how well it solves users’ needs, until nearly the very end.

Large danger of catastrophic failure:

• Any error in key user requirements dooms entire process

• Big chance that the design is not actually feasible

• Big potential for unacceptable performance

SEOC2 Spring 2005: Methodologies 6

The Unified Process

Modification of waterfall model to use modeling to forestall

backtracking, add focus on OO, etc.:

• Component based

• Uses UML for all for all blueprints

• Use-case driven

• Architecture centric

• Iterative and incremental

Details in Jacobson et al. (1998).

SEOC2 Spring 2005: Methodologies 7

Relatives of The Unified Process

The IBM Rational Unified Process (RUP) is a commercial

product and toolset, superseding:

• The Objectory Process

• The Booch Method

• The Object Modeling Technique

The Unified Software Development Process (UP) is a

published, non-proprietary method based on the RUP, but

without specific commercial tools or proprietary methods.

SEOC2 Spring 2005: Methodologies 8



Phases of UP Design

Each software release cycle proceeds through a series of

phases, each of which can have multiple modeling iterations:

Inception : Produces commitment to go ahead

(business case feasibility and scope known)

Elaboration : Produces basic architecture;

plan of construction; significan t risks identified;

major risks addressed

Construction : Produces beta-release system

Transition : Introduces system to users

SEOC2 Spring 2005: Methodologies 9

Waterfall Iterations Within Phases

W
O

R
K

FL
O

W
S

In
ce

pt
io

n

E
la

bo
ra

tio
n

C
on

st
ru

ct
io

n

T
ra

ns
iti

on

PHASES

ITERATIONS

1 2 3 4 5 6 7 8 9

Implementation

Test

Design

Analysis

Requirements

• Each phase can have

multiple iterations

• Each iteration can

include all workflows,

but some are more

heavily weighted in

different phases

• Still hard to change

requirements once

implementation underway

SEOC2 Spring 2005: Methodologies 10

UP vs. Waterfall Cycle

W
O

R
K

FL
O

W
S

In
ce

pt
io

n

E
la

bo
ra

tio
n

C
on

st
ru

ct
io

n

T
ra

ns
iti

on

PHASES

ITERATIONS

1 2 3 4 5 6 7 8 9

Implementation

Test

Design

Analysis

Requirements

W
O

R
K

FL
O

W
S

In
ce

pt
io

n

E
la

bo
ra

tio
n

C
on

st
ru

ct
io

n

T
ra

ns
iti

on

PHASES

ITERATIONS

Implementation

Test

Design

Analysis

Requirements

SEOC2 Spring 2005: Methodologies 11

The Product: A Series of Models

Analysis
model

Design
model

Deployment
model

Implementation
model

Test
model

Use−Case
model

specification

realisation

distribution

implementation

verification

SEOC2 Spring 2005: Methodologies 12



Use Cases

“A use case specifies a sequence of actions, including

variants, that the system can perform and that yields an

observable result of value to a particular actor.”

These drive:

• Requirements capture

• Analysis and design of how system realizes use cases

• Acceptance/system testing

• Planning of development tasks

• Traceability of design decisions back to use cases

SEOC2 Spring 2005: Methodologies 13

Use Case Example: 1

Initial use-case diagram:

Customer Withdraw money

Deposit money

accounts
Transfer between

SEOC2 Spring 2005: Methodologies 14

Use Case Example: 2

Analysis classes for withdrawing money:

Withdraw money Withdraw money

ANALYSIS MODELUSE−CASE MODEL

Dispenser Cashier
interface

Withdrawal Account

SEOC2 Spring 2005: Methodologies 15

Use Case Example: 3

Collaboration diagram for withdrawing money:

Customer

Cashier
interface

Dispenser

Withdrawal

Account

validate and
withdraw

identify request

authorisedispense

SEOC2 Spring 2005: Methodologies 16



Use Case Example: 4

Design classes introduced for analysis classes:

Cashier
interface

Display

Key pad

Card reader

Dispenser
sensor

Dispenser
feeder

Cash
counter

Withdrawal Account

Dispenser Withdrawal Account

ANALYSIS MODEL

DESIGN MODEL

Client
manager

Transaction
manager

Account
manager

SEOC2 Spring 2005: Methodologies 17

Use Case Example: 5

Class diagram which is part of the realization of the design model:

Customer

Display

Key pad

Card reader

Client
manager

Dispenser
sensor

Cash
counter

Dispenser
feeder

Transaction
manager

Account
manager

Account

Withdrawal

SEOC2 Spring 2005: Methodologies 18

Use Case Example: 6

Sequence diagram for part of the realization:

Card reader

Customer

Display Key pad
Client
manager

Cash
counter

Transaction
manager

Insert card
Card inserted

Ask for PIN code
Show request

Specify PIN code
PIN code

Request for validation
Ask amount

Show request

Specify amount
Amount

Request cash available

Request withdrawal

SEOC2 Spring 2005: Methodologies 19

Problems with UP

Heavy training, documentation, and tools requirements —

learning and using UML, modeling, process, tools,

techniques.

UML is not a native language for customers, and so they

often cannot provide good feedback until system is

implemented.

Requirements are very difficu lt to change at later stages, if

needed to match changes in business world, address new

competition, or fix mistakes in requirements capture.

SEOC2 Spring 2005: Methodologies 20



Assumptions of UP

UP and other “heavyweight” methodologies concentrate

on carefully controlled, up-front, documented thinking.

Based on assumption that cost of making changes rises

exponentially through the development stages.

To minimize backtracking, establishes rigorous control

over each stage.

At each stage a model acts as a proxy for the whole

system, helping to bring out problems as early as possible

(before they are set in code).

SEOC2 Spring 2005: Methodologies 21

Extreme Programming (XP)

What if it were possible to make the cost of change

constant across all stages, so that design and

requirements can be changed even at late stages?

XP tries to prevent backtracking by keeping the system

continuously flexible, eliminating the need for determining

the final correct requirements and design before

implementation.

XP is considered “lightweight”, and focuses on closely

knit, fast moving (aka “agile”) design/coding teams and

practices (Beck 1999).

SEOC2 Spring 2005: Methodologies 22

UP Cycle vs. XP Development

W
O

R
K

FL
O

W
S

In
ce

pt
io

n

E
la

bo
ra

tio
n

C
on

st
ru

ct
io

n

T
ra

ns
iti

on

PHASES

ITERATIONS

1 2 3 4 5 6 7 8 9

Implementation

Test

Design

Analysis

Requirements

W
O

R
K

FL
O

W
S

In
ce

pt
io

n

PHASES

 1 2 3 4 5 6 7 8

Implementation

Test

Design

Analysis

Requirements

M
ai

nt
en

an
ce

D
ev

el
op

m
en

t

RELEASES

SEOC2 Spring 2005: Methodologies 23

XP is Controversial

An IBM Java poll on XP from

www.xprogramming.com said roughly this:

• “I’ve tried it and loved it” (51%)

• “I’ve tried it and hated it” (8%)

• “It’s a good idea but it could never work” (25%)

• “It’s a bad idea - it could never work” (16%)

Of course, the UP is widely resented as well...

SEOC2 Spring 2005: Methodologies 24



How XP Imposes Control

Through a set of “practices” to which designers adhere

(using whatever other compatible methods and tools they

prefer). See: www.extremeprogramming.org/rules.html

Not strongly influenced by a particular design paradigm

(unlike UP).

Does require a strongly held (“extreme”) view of how to

approach design.

We consider some key practices in the following slides.

SEOC2 Spring 2005: Methodologies 25

1. The Planning Process

An XP project starts with a “Planning Game”.

The “customer” defines the business value of desired

“user stories”.

The programmers provide cost estimates for implementing

the user stories in appropriate combinations.

No one is allowed to speculate about producing a total

system which costs less than the sum of its parts.

SEOC2 Spring 2005: Methodologies 26

User Stories vs. Use Cases

A user story meets a similar need as a use case, but is

textual, not graphical, and is something that any customer

can do without training in UML.

A user story deliberately does not include all the possible

exceptions, variant pathways, etc. that go into use cases.

Short example: “A bank customer goes up to an ATM and

withdraws money from his or her account.”

SEOC2 Spring 2005: Methodologies 27

2. On-site customer

Someone who is knowledgeable about the business value

of the system sits with the design team.

This means there is always someone on hand to clarify

the business purpose, help write realistic tests, and make

small scale priority decisions.

The customer acts as a continuously available source of

corrections and additions to the requirements.

SEOC2 Spring 2005: Methodologies 28



3. Small Releases

Put a simple system into production early, implementing a

few important user stories.

Re-release it as frequently as possible while adding

significant business value (a set of important user stories)

in each release. E.g., aim for monthly rather than annual

release cycles.

The aim is to get feedback as soon as possible.

SEOC2 Spring 2005: Methodologies 29

4. Continuous Testing

Write the tests before writing the software.

Customers provide acceptance tests.

Continuously validate all code against the tests.

Tests act as system specific ation.

SEOC2 Spring 2005: Methodologies 30

5. Simple Design

Do the simplest thing that could possibly work.

Don’t design for tomorrow — you might not need it.

Extra complexity added “just in case” will fossilize your

design (e.g. your class hierarchies) and get into the way of

the changes you will need to make tomorrow.

SEOC2 Spring 2005: Methodologies 31

6. Refactoring

When tomorrow arrives, there will be a few cases where

you actually have to change the early simple design to a

more complicated one.

Change cannot occur only through small, scattered

changes, because over time such changes will gradually

turn the design into spaghetti.

To keep the design modifiab le at all stages, XP relies on

continuous refactoring: improving the design without

adding functionality.

SEOC2 Spring 2005: Methodologies 32



Refactoring Approach

Whenever the current design makes it unwieldy to

implement the current user story:

1. Step back and re-design the existing code so that it

will make the change easy and clean.

2. Make sure that the code meets the same tests as

before, i.e., provides the same functionality.

3. Integrate the changes with the team.

4. Make the change, pass the tests, and integrate again.

SEOC2 Spring 2005: Methodologies 33

Refactoring Guideline

“Three strikes and you refactor” principle - e.g. consider

removing code duplication if:

• The 1st time you need the code you write it

• The 2nd time, you reluctantly duplicate it

• The 3rd time, you refactor and share the resulting

code

Refactoring requires a system for integrating changes

from different teams.

SEOC2 Spring 2005: Methodologies 34

7. Collective Ownership

Anyone is allowed to change anyone else’s code modules,

without permission, if he or she believes that this would

improve the overall system.

To avoid chaos, collective ownership requires a good

configur ation management tool, but those are widely

available.

SEOC2 Spring 2005: Methodologies 35

8. Coding Standard

Since XP requires collective ownership (anyone can adapt

anyone else’s code) the conventions for writing code must

be uniform across the project.

This requires a single coding standard to which everyone

adheres.

SEOC2 Spring 2005: Methodologies 36



9. Continuous Integration

Integration and full-test-suite validation happens no more

than a day after code is written.

This means that individual teams don’t accumulate a

library of possibly relevant but obscure code.

Moreover, it enables everyone to freely modify code at any

time, because they know that they have access to the

latest design.

SEOC2 Spring 2005: Methodologies 37

10. Pair Programming

All code is written by a pair of people at one machine.

• One partner is doing the coding

• The other is considering strategy (Is the approach

going to work? What other test cases might we need?

Could we simplify the problem so we don’t have to do

this? Etc.)

This is unpalatable to some but appears vital to the XP

method, because it helps make collective code ownership

work.

SEOC2 Spring 2005: Methodologies 38

11. 40-Hour week

XP is intense so it is necessary to prevent “burnout”.

Designers are discouraged from working more than 40

hours per week.

If it is essential to work harder in one week then the

following week should drop back to normal (or less).

SEOC2 Spring 2005: Methodologies 39

Problems with XP

Published interfaces (e.g. APIs): some code is not

practical to refactor, because not all uses can be known,

so that code must anticipate all reasonable tomorrows.

Many programmers resist pair programming or other XP

guidelines; teams are often spread geographically, and

even at one site sharing a computer is often awkward.

The customer isn’t always available or willing, and may not

be able to agree to an open-ended process.

Over time XP has become more heavy weight, trying to

incorporate new realizations, just as UP did.
SEOC2 Spring 2005: Methodologies 40



Summary

• Methodologies: principled ways to manage large projects

• Waterfall model works in other disciplines, where most

of the work is on the physical implementation, but in

SE all work is conceptual

• Unified Process constructs gradually more elaborate

models to uncover risks and solidify requirements and

design as early as possible

• Extreme Programming relies on continuous customer

involvement, testing, and refactoring to deliver code

early and continuously, minimizing risk of complete failure.

SEOC2 Spring 2005: Methodologies 41

References

Beck, K. (1999). Extreme Programming Explained. Reading, MA:

Addison-Wesley.

Jacobson, I., Booch, G., & Rumbaugh, J. (1998). The Unified Software

Development Process. Reading, MA: Addison-Wesley.

Royce, W. W. (1970). Managing the development of large software sys-

tems. In Proceedings of IEEE WESCON, pp. 1–9.

SEOC2 Spring 2005: Methodologies 41


