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Why Measure?

When planning and executing a project, we want to:

• Assess and manage risk

• Trade design decisions against others

• Track progress and reevaluate when necessary

• Verify that objectives have been met

• Predict how the project will go in the future

To do this well requires accurate, timely measurement,

particularly crucial for waterfall-type methodologies.
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How to Measure

Before measuring we should answer several questions:

• What are the issues we need to measure?

• Which measures are appropriate to them?

• How do we identify and prioritize issues?

• What should be in a measurement plan?

• How severe are our limitations?

Bear in mind that the limitations are often very strong, and

obtaining useful data is difficult and sometimes impossible.
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Issues to be Measured

1. Schedule : Can we expect it to be done on time?

2. Cost : Can we afford to finish this project, or will it end

up costing more than it is worth?

3. Growth : Is the project stable, or expanding in size and

scope?

4. Quality : Is the product being made well, with few bugs?

5. Ability : How talented is our team at design, coding?

6. Technology : Is the underlying technology viable?

Most of these interact strongly with the others.
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Issues 1. Schedule

What you want to know: What you can measure:

Is progress being made? Dates of milestone delivery

Is work being done? Components completed

Requirements met

Paths tested

Problem reports resolved

Reviews completed

Change requests completed
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Issues 2. Cost

What you want to know: What you can measure:

How much is it demanding Total effort

of our staff? Number of staff involved

Staff experience levels

Staff turnover

Are we getting our money’s Earned value

worth? Cost

Is project making good use Availability dates (too early, late?)

of external resources? Resource utilization
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Issues 3. Growth

What you want to know: What you can measure:

How large is this program? Lines of code

Number of components

Words of memory

Database size

How much does this Requirements met

program accomplish? Function points

Change requests completed
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Issues 4. Quality

What you want to know: What you can measure:

Are there a lot of bugs? Problem reports

Defect density

Failure interval

How hard was it to fix Rework size

the bugs? Rework effort
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Issues 5. Ability

What you want to know: What you can measure:

Is the development process

well managed?

Capability maturity model level

How productive is this team? Code size / effort

Functional size / effort
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Issues 6. Technology

What you want to know: What you can measure:

Is the program fast enough? Cycle time

Are the resources required by CPU utilization

the program acceptable? I/O utilization

Memory utilization

Response time
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Identifying Issues

• Risk assessments

• Project constraints (e.g. budgets)

• Product acceptance criteria

• External requirements

• Past projects
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Prioritizing Issues Example

Issue Probability Relative Project

of occurrence impact exposure

Aggressive

schedule

1.0 10 10

Unstable reqs 1.0 8 8

Staff experi-

ence

1.0 5 8

Reliability reqs 0.9 3 4

COTS perfor-

mance

0.2 9 1
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Making a Measurement Plan

• Issues and measures

• Data sources

• Levels of measurement

• Aggregation structure

• Frequency of collection

• Method of access

• Communication and interfaces

• Frequency of reporting
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Limitations 1

• Milestones don’t measure effort, only give critical

paths

• Difficult to compare relative importance of measures

• Incremental design requires measuring of incomplete

functions

• Important measures may be spread across

components

• Cost of design is not an indicator of performance
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Limitations 2

• Reliable historical data is hard to find

• Some software statistics are time consuming to collect

• Some measures only apply after coding has been

done

• Size doesn’t map directly to functionality, complexity

or quality

• Time lag between problems and their appearance in

reports
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Limitations 3

• Changes suggested by one performance indicator

may affect others

• Often no distinction between work and re-work

• Overall capability maturity level may not predict

performance on a specific project

• Technical performance measures often are

misleadingly precise, yet not very accurate

• Technical resource utilization may only be known after

integration and testing
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Checking Your Data

• Are units of measure comparable (e.g. lines of code in

Ada versus Java)? Normalization?

• What are acceptable ranges for data values?

• Can we tolerate gaps in data supplied?

• When does change to values amount to re-planning?
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Indicator 1. Design Progress
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With an indicator and a plan, you can see if you are on track.
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Indicator 2. Effort

Project time
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Estimator: Size-Effort
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With enough data, you can try to predict future performance.
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Summary

• Measurement is time-consuming, difficult, and

impossible to do perfectly

• You need to choose what you want to find out, and

how to approach measuring that

• Always be aware of the limitations of the measurement

and of how it relates to what you really want to know

• Be careful when trying to relate past performance to

the future
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