
Software Measurement

Dr. James A. Bednar
jbednar@inf.ed.ac.uk

http://homepages.inf.ed.ac.uk/jbednar

Dr. David Robertson
dr@inf.ed.ac.uk

http://www.inf.ed.ac.uk/ssp/members/dave.htm

SEOC2 Spring 2005: Software Measurement 1



Why Measure?

When planning and executing a project, we want to:

• Assess and manage risk

• Trade design decisions against others

• Track progress and reevaluate when necessary

• Verify that objectives have been met

• Predict how the project will go in the future

To do this well requires accurate, timely measurement,

particularly crucial for waterfall-type methodologies.

SEOC2 Spring 2005: Software Measurement 2



How to Measure

Before measuring we should answer several questions:

• What are the issues we need to measure?

• Which measures are appropriate to them?

• How do we identify and prioritize issues?

• What should be in a measurement plan?

• How severe are our limitations?

Bear in mind that the limitations are often very strong, and

obtaining useful data is difficult and sometimes impossible.

SEOC2 Spring 2005: Software Measurement 3



Issues to be Measured

1. Schedule : Can we expect it to be done on time?

2. Cost : Can we afford to finish this project, or will it end

up costing more than it is worth?

3. Growth : Is the project stable, or expanding in size and

scope?

4. Quality : Is the product being made well, with few bugs?

5. Ability : How talented is our team at design, coding?

6. Technology : Is the underlying technology viable?

Most of these interact strongly with the others.
SEOC2 Spring 2005: Software Measurement 4



Issues 1. Schedule

What you want to know: What you can measure:

Is progress being made? Dates of milestone delivery

Is work being done? Components completed

Requirements met

Paths tested

Problem reports resolved

Reviews completed

Change requests completed

SEOC2 Spring 2005: Software Measurement 5



Issues 2. Cost

What you want to know: What you can measure:

How much is it demanding Total effort

of our staff? Number of staff involved

Staff experience levels

Staff turnover

Are we getting our money’s Earned value

worth? Cost

Is project making good use Availability dates (too early, late?)

of external resources? Resource utilization

SEOC2 Spring 2005: Software Measurement 6



Issues 3. Growth

What you want to know: What you can measure:

How large is this program? Lines of code

Number of components

Words of memory

Database size

How much does this Requirements met

program accomplish? Function points

Change requests completed

SEOC2 Spring 2005: Software Measurement 7



Issues 4. Quality

What you want to know: What you can measure:

Are there a lot of bugs? Problem reports

Defect density

Failure interval

How hard was it to fix Rework size

the bugs? Rework effort

SEOC2 Spring 2005: Software Measurement 8



Issues 5. Ability

What you want to know: What you can measure:

Is the development process

well managed?

Capability maturity model level

How productive is this team? Code size / effort

Functional size / effort

SEOC2 Spring 2005: Software Measurement 9



Issues 6. Technology

What you want to know: What you can measure:

Is the program fast enough? Cycle time

Are the resources required by CPU utilization

the program acceptable? I/O utilization

Memory utilization

Response time

SEOC2 Spring 2005: Software Measurement 10



Identifying Issues

• Risk assessments

• Project constraints (e.g. budgets)

• Product acceptance criteria

• External requirements

• Past projects

SEOC2 Spring 2005: Software Measurement 11



Prioritizing Issues Example

Issue Probability Relative Project

of occurrence impact exposure

Aggressive

schedule

1.0 10 10

Unstable reqs 1.0 8 8

Staff experi-

ence

1.0 5 8

Reliability reqs 0.9 3 4

COTS perfor-

mance

0.2 9 1

SEOC2 Spring 2005: Software Measurement 12



Making a Measurement Plan

• Issues and measures

• Data sources

• Levels of measurement

• Aggregation structure

• Frequency of collection

• Method of access

• Communication and interfaces

• Frequency of reporting

SEOC2 Spring 2005: Software Measurement 13



Limitations 1

• Milestones don’t measure effort, only give critical

paths

• Difficult to compare relative importance of measures

• Incremental design requires measuring of incomplete

functions

• Important measures may be spread across

components

• Cost of design is not an indicator of performance

SEOC2 Spring 2005: Software Measurement 14



Limitations 2

• Reliable historical data is hard to find

• Some software statistics are time consuming to collect

• Some measures only apply after coding has been

done

• Size doesn’t map directly to functionality, complexity

or quality

• Time lag between problems and their appearance in

reports

SEOC2 Spring 2005: Software Measurement 15



Limitations 3

• Changes suggested by one performance indicator

may affect others

• Often no distinction between work and re-work

• Overall capability maturity level may not predict

performance on a specific project

• Technical performance measures often are

misleadingly precise, yet not very accurate

• Technical resource utilization may only be known after

integration and testing

SEOC2 Spring 2005: Software Measurement 16



Checking Your Data

• Are units of measure comparable (e.g. lines of code in

Ada versus Java)? Normalization?

• What are acceptable ranges for data values?

• Can we tolerate gaps in data supplied?

• When does change to values amount to re-planning?

SEOC2 Spring 2005: Software Measurement 17



Indicator 1. Design Progress

Project time

N
um

be
r o

f u
ni

ts
 c

om
pl

et
in

g 
de

si
gn

Planned

Actual

With an indicator and a plan, you can see if you are on track.

SEOC2 Spring 2005: Software Measurement 18



Indicator 2. Effort

Project time

St
af

f h
ou

rs
 p

er
 m

on
th

Actual

Planned

SEOC2 Spring 2005: Software Measurement 19



Estimator: Size-Effort

St
af

f m
on

th
s 

(l
og

 s
ca

le
)

Upper 95%

Lower 95%

Number of lines of source code (log scale)

With enough data, you can try to predict future performance.

SEOC2 Spring 2005: Software Measurement 20



Summary

• Measurement is time-consuming, difficult, and

impossible to do perfectly

• You need to choose what you want to find out, and

how to approach measuring that

• Always be aware of the limitations of the measurement

and of how it relates to what you really want to know

• Be careful when trying to relate past performance to

the future

SEOC2 Spring 2005: Software Measurement 21


