
Estimating Size and Effort

Dr. James A. Bednar
jbednar@inf.ed.ac.uk

http://homepages.inf.ed.ac.uk/jbednar

Dr. David Robertson
dr@inf.ed.ac.uk

http://www.inf.ed.ac.uk/ssp/members/dave.htm

SEOC2 Spring 2005: Estimation 1



Estimating SW Size and Effort

Most methods for estimating the total effort required for a

software project (to decide on schedule, staffing, and

feasibility) depend on the size of the software project.

Unfortunately, it is difficult to measure size meaningfully, it

is difficult to estimate size in advance, and it is difficult to

extrapolate from size to what we are really interested in.

We will first look at methods for estimating size, then at

how size can be used to estimate effort (e.g. using

COCOMO).

SEOC2 Spring 2005: Estimation 2



Approaches to Estimating Size

• Through expert consensus (Wideband-Delphi)

• From historical “population” data (Fuzzy logic)

• From standard components (Component estimating)

• From a model of function (Function points)

See Humphrey (2002) for more information on these

methods and other more complicated ones.

SEOC2 Spring 2005: Estimation 3



Wideband-Delphi Estimating

1. Group of experts: [E1, . . . , Ei, . . . , En]

2. All Ei meet to discuss project

3. Each anonymously estimates size:

[X1, . . . , Xi, . . . , Xn]

4. Each Ei gets to see all Xj (anonymously)

5. Stop if the estimates are sufficiently close together

6. Otherwise, back to step 2

Helps get a group of engineers committed to a particular

schedule.

SEOC2 Spring 2005: Estimation 4



Fuzzy-Logic Estimating
Break previous products into categories by size:

Range Nominal KLOC KLOC range included

V Small 2 1 – 4

Small 8 4 – 16

Medium 32 16 – 64

Large 128 64 – 256

V Large 512 256 – 1028

Then look at the previous projects in each category and

decide which category contains projects similar to this one.

Problem: Only a very rough estimate, yet requires several

relevant historical datapoints in each range (rare)

SEOC2 Spring 2005: Estimation 5



Standard Component Estimating

• Gather historical data on types and sizes of key components

• For each type (i), guess how many you will need (Mi)

• Also guess largest (Li) and smallest (Si) extremes

• Estimated number (Ei) is a function of Mi, Li and Si, e.g.:

Ei = (Si + 4Mi + Li)/6

• Total size calculated from estimated number and

average size (Xi) of each type: X =
∑

i EiXi

Helps break down a large project into more-easily

guessable chunks.
SEOC2 Spring 2005: Estimation 6



Function Point Estimating (1)

Popular method based on a weighted count of common

functions of software. The five basic functions are:

Inputs : Sets of data supplied by users or other programs

Outputs : Sets of data produced for users or other programs

Inquiries : Means for users to interrogate the system

Data files : Collections of records which the system modifies

Interfaces : Files/databases shared with other systems

SEOC2 Spring 2005: Estimation 7



Function Point Estimating (2)

Function Count Weight Total

Inputs 8 4 32

Outputs 12 5 60

Inquiries 4 4 16

Data files 2 10 20

Interfaces 1 7 7

Total 135

May adjust function point total using “influence factors”.

SEOC2 Spring 2005: Estimation 8



Estimating Total Effort

Once we have the size estimate, we can try to estimate

the total effort involved, e.g. in person-months, e.g. to

decide on staffing levels.

Unfortunately, the total amount of effort required depends

on the staffing levels – cf. The Mythical Man-Month

(Brooks 1995). So it is easy to get stuck in circular

reasoning.

Still, with some big assumptions, it is possible to try to use

historical experience with similarly sized projects.

SEOC2 Spring 2005: Estimation 9



COCOMO Model

The Constructive Cost Model (COCOMO; Boehm 1981)

is popular for effort estimation. COCOMO is a

mathematical equation that can be fit to measurements of

effort for different-sized completed projects, providing

estimates for future projects.

COCOMO II (Boehm et al. 1995) is the current version

(see http://sunset.usc.edu/research/COCOMOII/), but we

will focus on the original simpler equation.

All we are hoping to get is a rough (order of magnitude)

estimate.

SEOC2 Spring 2005: Estimation 10



Basic COCOMO Model

In its simplest form COCOMO is:

E = C ∗ P s ∗ M

where:

• E is the estimated effort (e.g. in person-months)

• C is a complexity factor

• P is a measure of product size (e.g. KLOC)

• s is an exponent (usually close to 1)

• M is a multiplier to account for project stages

SEOC2 Spring 2005: Estimation 11



Basic COCOMO Model Examples
We ignore the multiplier, M , so E = C ∗ P s. Then we fit

C and s to historical data from different types of projects:

Simple (E = 2.4 ∗ P 1.05) : A well understood

application developed by a small team.

Intermediate (E = 3.0 ∗ P 1.12) : A more complex

project for which team members have limited

experience of related systems.

Embedded (E = 3.6 ∗ P 1.20) : A complex project in

which the software is part of a complex of hardware,

software, regulations and operational constraints.

SEOC2 Spring 2005: Estimation 12



Behavior of the Basic Examples

Pe
rs

on
−m

on
th

s

120
K Lines of Source Code

0
0

1000

Simple

Embedded

Intermediate

SEOC2 Spring 2005: Estimation 13



Extending the COCOMO Model

The basic examples didn’t use the multiplier, M .

M can be used to adjust the basic estimate by including

expert knowledge of the specific attributes of this project.

Potential attributes/constraints to consider:

• Product attributes (e.g. reliability)

• Computer attributes (e.g. memory constraints)

• Personnel attributes (e.g. programming language experience)

• Project attributes (e.g. project development schedule)

SEOC2 Spring 2005: Estimation 14



COCOMO Multiplier Example 1

If the basic estimate is 1216 person-months, can add

estimates of the effect of various constraints or attributes:

Attribute Magnitude Multiplier

Reliability V high 1.4

Complexity V high 1.3

Memory constraint High 1.2

Tool use Low 1.1

Schedule Accelerated 1.23

New E: 1216 ∗ 1.4 ∗ 1.3 ∗ 1.2 ∗ 1.1 ∗ 1.23 = 3593

SEOC2 Spring 2005: Estimation 15



COCOMO Multiplier Example 2

Using the basic estimate of 1216 person-months, changing

estimates of the constraints/attributes changes the result:

Attribute Magnitude Multiplier

Reliability V low 0.75

Complexity V low 0.7

Memory constraint None 1

Tool use High 0.9

Schedule Normal 1

New E: 1216 ∗ 0.75 ∗ 0.7 ∗ 1 ∗ 0.9 ∗ 1 = 575

SEOC2 Spring 2005: Estimation 16



COCOMO Limitations 1

Like any mathematical model, COCOMO has two main

potential types of error: model error and parameter error.

Model error: Do projects really scale with KLOC as modeled?

From the COCOMO II web site: “The 1998 version of the

model has been calibrated to 161 data points [projects]...

Over those 161 data points, the ’98 release demonstrates

an accuracy of within 30% of actuals 75% of the time”.

Thus even looking retroactively, with accurate KLOC

estimates, 25% of projects are more than 30%

mis-estimated.
SEOC2 Spring 2005: Estimation 17



COCOMO Limitations 2

Parameter estimation error: Can the various parameters

be set meaningfully?

E.g. result depends crucially on KLOC, which is difficult to

estimate accurately.

The other parameters can also be difficult to estimate for a

new project, particularly at the beginning when scheduling

and feasibility need to be decided.

SEOC2 Spring 2005: Estimation 18



Estimation Limitations
Model predictions can be sensitive to small changes in

parameters, so be sure to perform a sensitivity analysis for

different parameter estimates.

In any case, early estimates are likely to be wrong, and

should be revised once more data is available.

Also, predictions can strongly affect the outcome:

• If estimate is too high, programmers may relax and

work on side issues or exploring many alternatives
• If estimate is too low, quality may be sacrificed to meet

the deadline

SEOC2 Spring 2005: Estimation 19



Summary
• No size estimation method is foolproof or particularly

accurate

• Even once size is available, hard to extrapolate to

effort, cost, estimated schedule, etc.

• Estimates can be self-fulfilling or self-defeating

• Thus it is difficult to evaluate how well estimation is

working, even retroactively

• Use an appropriate method for how much data you

have – if no data, then gut instinct estimation is reasonable

• Try to avoid depending on your estimates being accurate

SEOC2 Spring 2005: Estimation 20



References

Boehm, B. (1981). Software Engineering Economics. Englewood Cliffs,

NJ: Prentice-Hall.

Boehm, B., Clark, B., Horowitz, E., Madachy, R., Shelby, R., & Westland,

C. (1995). Cost models for future software life cycle processes:

COCOMO 2.0. Annals of Software Engineering.

Brooks, F. P., Jr. (1995). The Mythical Man-Month. Reading, MA:

Addison-Wesley. Expanded reprint of 1975 edition.

Humphrey, W. S. (2002). A Discipline for Software Engineering. Reading,

MA: Addison-Wesley.

SEOC2 Spring 2005: Estimation 20


